Effect of Crystallographic Orientation on the Pitting Corrosion Resistance of Laser Surface Melted AISI 304L Austenitic Stainless Steel

The localized corrosion behavior of laser surface melted 304L austenitic stainless steel was studied by potentiodynamic polarization test. The extent of improvement in corrosion resistance was governed by the preferred orientation and the percentage of delta ferrite present on the surface of the laser melted sample. It was established by orientation imaging microscopy that the highest pitting potential value was obtained when grains were oriented in the most close- packed [101] direction compared to the random distribution of the base metal and other laser surface melted samples oriented in [001] direction. The sample with lower percentage of ferrite had good pitting resistance.

Social Network Management Enhances Customer Relationship

The study aims to develop a framework of social network management to enhance customer relationship. Social network management of this research is derived from social network site management, individual and organization social network usage motivation. The survey was conducted with organization employees who have used social network to interact with customers. The results reveal that content, link, privacy and security, page design and interactivity are the major issues of social network site management. Content, link, privacy and security, individual and organization motivation have major impacts on encouraging business knowledge sharing among employees. Moreover, Page design and interactivity, content, organization motivation and knowledge sharing can improve customer relationships.

Averaging Model of a Three-Phase Controlled Rectifier Feeding an Uncontrolled Buck Converter

Dynamic models of power converters are normally time-varying because of their switching actions. Several approaches are applied to analyze the power converters to achieve the timeinvariant models suitable for system analysis and design via the classical control theory. The paper presents how to derive dynamic models of the power system consisting of a three-phase controlled rectifier feeding an uncontrolled buck converter by using the combination between the well known techniques called the DQ and the generalized state-space averaging methods. The intensive timedomain simulations of the exact topology model are used to support the accuracies of the reported model. The results show that the proposed model can provide good accuracies in both transient and steady-state responses.

Ultrasonic Evaluation of Bone Callus Growth in a Rabbit Tibial Distraction Model

Ultrasound is useful in demonstrating bone mineral density of regenerating osseous tissue as well as structural alterations. A proposed ultrasound method, which included ultrasonography and acoustic parameters measurement, was employed to evaluate its efficacy in monitoring the bone callus changes in a rabbit tibial distraction osteogenesis (DO) model. The findings demonstrated that ultrasonographic images depicted characteristic changes of the bone callus, typical of histology findings, during the distraction phase. Follow-up acoustic parameters measurement of the bone callus, including speed of sound, reflection and attenuation, showed significant linear changes over time during the distraction phase. The acoustic parameters obtained during the distraction phase also showed moderate to strong correlation with consolidated bone callus density and micro-architecture measured by micro-computed tomography at the end of the consolidation phase. The results support the preferred use of ultrasound imaging in the early monitoring of bone callus changes during DO treatment.

Managing a Manufacturing System with Integration of Walking Worker and Lean Thinking

A product goes through various processes in a production flow which is also known as assembly line in manufacturing process management. Toyota created a new concept which is known as lean concept in manufacturing industry. Today it is the leading model in manufacturing plants through the globe. The linear walking worker assembly line is a flexible assembly system where each worker travels down the line carrying out each assembly task at each station; and each worker accomplishes the assembly of a unit from start to finish. This paper attempts to combine the flexibility of the walking worker and lean in order to quantify the benefits from applying the shop floor principles of lean management.

Experimental Parallel Architecture for Rendering 3D Model into MPEG-4 Format

This paper will present the initial findings of a research into distributed computer rendering. The goal of the research is to create a distributed computer system capable of rendering a 3D model into an MPEG-4 stream. This paper outlines the initial design, software architecture and hardware setup for the system. Distributed computing means designing and implementing programs that run on two or more interconnected computing systems. Distributed computing is often used to speed up the rendering of graphical imaging. Distributed computing systems are used to generate images for movies, games and simulations. A topic of interest is the application of distributed computing to the MPEG-4 standard. During the course of the research, a distributed system will be created that can render a 3D model into an MPEG-4 stream. It is expected that applying distributed computing principals will speed up rendering, thus improving the usefulness and efficiency of the MPEG-4 standard

Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences

An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.

Street Network in Bandung City, Indonesia: Comparison between City Center and New Commercial Area

Bandung city center can be deemed as economic, social and cultural center. However the city center suffers from deterioration. The retail activities tend to shift outward the city center. Numerous idyllic residences changed into business premises in two villages situated in the north part of the city during 1990s, especially after a new highway and flyover opened. According to space syntax theory, the pattern of spatial integration in the urban grid is a prime determinant of movement patterns in the system. The syntactic analysis results show the flyover has insignificant influence on street network in the city center. However the flyover has been generating a major difference in the new commercial area since it has become relatively as strategic as the city center. Besides street network, local government policy, rapid private motorization and particular condition of each site also played important roles in encouraging the current commercial areas to flourish.

Determination of Neighbor Node in Consideration of the Imaging Range of Cameras in Automatic Human Tracking System

A automatic human tracking system using mobile agent technology is realized because a mobile agent moves in accordance with a migration of a target person. In this paper, we propose a method for determining the neighbor node in consideration of the imaging range of cameras.

Apply Super-SVA to SAR Imaging with Both Aperture Gaps and Bandwidth Gaps

Synthetic aperture radar (SAR) imaging usually requires echo data collected continuously pulse by pulse with certain bandwidth. However in real situation, data collection or part of signal spectrum can be interrupted due to various reasons, i.e. there will be gaps in spatial spectrum. In this case we need to find ways to fill out the resulted gaps and get image with defined resolution. In this paper we introduce our work on how to apply iterative spatially variant apodization (Super-SVA) technique to extrapolate the spatial spectrum in both azimuthal and range directions so as to fill out the gaps and get correct radar image.

A Grid-based Neural Network Framework for Multimodal Biometrics

Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.

Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Modelling of Electron States in Quantum -Wire Systems - Influence of Stochastic Effects on the Confining Potential

In this work, we address theoretically the influence of red and white Gaussian noise for electronic energies and eigenstates of cylindrically shaped quantum dots. The stochastic effect can be imagined as resulting from crystal-growth statistical fluctuations in the quantum-dot material composition. In particular we obtain analytical expressions for the eigenvalue shifts and electronic envelope functions in the k . p formalism due to stochastic variations in the confining band-edge potential. It is shown that white noise in the band-edge potential leaves electronic properties almost unaffected while red noise may lead to changes in state energies and envelopefunction amplitudes of several percentages. In the latter case, the ensemble-averaged envelope function decays as a function of distance. It is also shown that, in a stochastic system, constant ensembleaveraged envelope functions are the only bounded solutions for the infinite quantum-wire problem and the energy spectrum is completely discrete. In other words, the infinite stochastic quantum wire behaves, ensemble-averaged, as an atom.

Preparation and Bioevaluation of DOTA-Cyclic RGD Peptide Dimer Labeled with 68Ga

Radiolabeled cyclic RGD peptides targeting integrin αvβ3 are reported as promising agents for the early diagnosis of metastatic tumors. With an aim to improve tumor uptake and retention of the peptide, cyclic RGD peptide dimer E[c (RGDfK)] 2 (E = Glutamic acid, f = phenyl alanine, K = lysine) coupled to the bifunctional chelator DOTA was custom synthesized and radiolabelled with 68Ga. Radiolabelling of cyclic RGD peptide dimer with 68Ga was carried out using HEPES buffer and biological evaluation of the complex was done in nude mice bearing HT29 tumors.

A New Dimension of Business Intelligence: Location-based Intelligence

Through the course of this paper we define Locationbased Intelligence (LBI) which is outgrowing from process of amalgamation of geolocation and Business Intelligence. Amalgamating geolocation with traditional Business Intelligence (BI) results in a new dimension of BI named Location-based Intelligence. LBI is defined as leveraging unified location information for business intelligence. Collectively, enterprises can transform location data into business intelligence applications that will benefit all aspects of the enterprise. Expectations from this new dimension of business intelligence are great and its future is obviously bright.

Evaluation of Drainage Conditions along Selected Roadways in Amman

Roadways in Amman city face many problems consequent upon poor drainage systems. Evaluation tools are necessary to identify those roads needing improvement in their drainage system, and those needing regular maintenance. This work aims at evaluating drainage conditions in selected roadways in Amman city with the intent of identifying the problems encountered in their drainage systems. Three sites in the vicinity of Amman city have been selected and then inspected via several field visits to determine the state of their existing drainage systems and define the major problems encountered in these systems. The evaluation tool used in this study is based on visual inspection supported by photographs that depicted the defined problems. Following the field assessment, the drainage system in each road was rated as excellent, fair, good, or poor. The study reveals that more than 60% of the roadways in the selected sites were in poor drainage conditions, which lead to tremendous environmental problems. This assessment serves as a guide for local decision makers to help plan for the maintenance of Amman city roadways drainage systems, and propose ways of managing the associated problems.

Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

A Universal Model for Content-Based Image Retrieval

In this paper a novel approach for generalized image retrieval based on semantic contents is presented. A combination of three feature extraction methods namely color, texture, and edge histogram descriptor. There is a provision to add new features in future for better retrieval efficiency. Any combination of these methods, which is more appropriate for the application, can be used for retrieval. This is provided through User Interface (UI) in the form of relevance feedback. The image properties analyzed in this work are by using computer vision and image processing algorithms. For color the histogram of images are computed, for texture cooccurrence matrix based entropy, energy, etc, are calculated and for edge density it is Edge Histogram Descriptor (EHD) that is found. For retrieval of images, a novel idea is developed based on greedy strategy to reduce the computational complexity. The entire system was developed using AForge.Imaging (an open source product), MATLAB .NET Builder, C#, and Oracle 10g. The system was tested with Coral Image database containing 1000 natural images and achieved better results.

Segmentation of Cardiac Images by the Force Field Driven Speed Term

The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.

Identification of an Appropriate Alternative Waste Technology for Energy Recovery from Waste through Multi-Criteria Analysis

Waste management is now a global concern due to its high environmental impact on climate change. Because of generating huge amount of waste through our daily activities, managing waste in an efficient way has become more important than ever. Alternative Waste Technology (AWT), a new category of waste treatment technology has been developed for energy recovery in recent years to address this issue. AWT describes a technology that redirects waste away from landfill, recovers more useable resources from the waste flow and reduces the impact on the surroundings. Australia is one of the largest producers of waste per-capita. A number of AWTs are using in Australia to produce energy from waste. Presently, it is vital to identify an appropriate AWT to establish a sustainable waste management system in Australia. Identification of an appropriate AWT through Multi-criteria analysis (MCA) of four AWTs by using five key decision making criteria is presented and discussed in this paper.