Pronominal Anaphora Processing

Discourse pronominal anaphora resolution must be part of any efficient information processing systems, since the reference of a pronoun is dependent on an antecedent located in the discourse. Contrary to knowledge-poor approaches, this paper shows that syntax-semantic relations are basic in pronominal anaphora resolution. The identification of quantified expressions to which pronouns can be anaphorically related provides further evidence that pronominal anaphora is based on domains of interpretation where asymmetric agreement holds.

Investigation of Corona wind Effect on Heat and Mass Transfer Enhancement

Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using very small amount of energy. Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which is charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over water surface. The study was focused on the effect of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e. with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancements were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively.

Challenges for Security in Wireless Sensor Networks (WSNs)

Wireless sensor network is formed with the combination of sensor nodes and sink nodes. Recently Wireless sensor network has attracted attention of the research community. The main application of wireless sensor network is security from different attacks both for mass public and military. However securing these networks, by itself is a critical issue due to many constraints like limited energy, computational power and lower memory. Researchers working in this area have proposed a number of security techniques for this purpose. Still, more work needs to be done.In this paper we provide a detailed discussion on security in wireless sensor networks. This paper will help to identify different obstacles and requirements for security of wireless sensor networks as well as highlight weaknesses of existing techniques.

Svision: Visual Identification of Scanning and Denial of Service Attacks

We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.

Preliminary Study on Determining Stem Diameter Variations of Sympodial Orchid

Changes in stem diameter of orchid plants were investigated in a control growing climate. Previous studies have focused on stem diameter in relation to plant water on terrestrial plants in order to schedule the irrigation. The objective of this work was to evaluate the ability of the strain gauges to capture changes in the epiphytes plant stem. Experiments were carried out by using the sympodial orchid, Dendrobium Sonia in a stressed condition. From the findings, the sensor can detect changes in the plant stem and the result can easily be used as a reference for further studies for the development of a proper watering system.

Development of 3D Coordinates and Damaged Point Detection System for Ducts using IMU

Recently, as the scale of construction projects has increases, more ground excavation for foundations is carried out than ever before. Consequently, damage to underground ducts (gas, water/sewage or oil pipelines, communication cables or power cable ducts) or superannuated pipelines frequently cause serious accidents resulting in damage to life and property. (In Korea, the total length of city water pipelines was approximately 2,000 km as of the end of 2009.) In addition, large amounts of damage caused by fractures, water and gas leakage caused by superannuation or damage to underground ducts in construction has been reported. Therefore, a system is required to precisely detect defects and deterioration in underground pipelines and the locations of such defects, for timely and accurate maintenance or replacement of the ducts. In this study, a system was developed which can locate underground structures (gas and water pipelines, power cable ducts, etc.) in 3D-coordinates and monitor the degree and position of defects using an Inertial Measurement Unit (IMU) sensing technique. The system can prevent damage to underground ducts and superannuated pipelines during construction, and provide reliable data for maintenance. The utility of the IMU sensing technique used in aircraft and ships in civil applications was verified.

An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference

The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.

Automated Service Scene Detection for Badminton Game Analysis Using CHLAC and MRA

Extracting in-play scenes in sport videos is essential for quantitative analysis and effective video browsing of the sport activities. Game analysis of badminton as of the other racket sports requires detecting the start and end of each rally period in an automated manner. This paper describes an automatic serve scene detection method employing cubic higher-order local auto-correlation (CHLAC) and multiple regression analysis (MRA). CHLAC can extract features of postures and motions of multiple persons without segmenting and tracking each person by virtue of shift-invariance and additivity, and necessitate no prior knowledge. Then, the specific scenes, such as serve, are detected by linear regression (MRA) from the CHLAC features. To demonstrate the effectiveness of our method, the experiment was conducted on video sequences of five badminton matches captured by a single ceiling camera. The averaged precision and recall rates for the serve scene detection were 95.1% and 96.3%, respectively.

Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 using Dye Sensitized TiO2 under Visible Light

The accelerated sonophotocatalytic degradation of Reactive Red (RR) 120 dye under visible light using dye sensitized TiO2 activated by ultrasound has been carried out. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation contributes degradation through cavitation leading to the splitting of H2O2 produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen (1O2) and superoxide (O2 -●) radicals in the presence of oxygen. The increase in the amount of reactive radical species which induce faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst are responsible for the synergy observed under sonication. A comparative study of photocatalysis and sonophotocatalysis using TiO2, Hombikat UV 100 and ZnO was also carried out.

Surge Protection of Power Supply used for Automation Devices in Power Distribution System

The intent of this essay is to evaluate the effectiveness of surge suppressor aimed at power supply used for automation devices in power distribution system which is consist of MOV and T type low-pass filter. Books, journal articles and e-sources related to surge protection of power supply used for automation devices in power distribution system were consulted, and the useful information was organized, analyzed and developed into five parts: characteristics of surge wave, protection against surge wave, impedance characteristics of target, using Matlab to simulate circuit response after 5kV,1.2/50s surge wave and suggestions for surge protection. The results indicate that various types of load situation have great impact on the effectiveness of surge protective device. Therefore, type and parameters of surge protective device need to be carefully selected, and load matching is also vital to be concerned.

Distribution Feeder Reconfiguration Considering Distributed Generators

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. Fueling the attention have been the possibilities of international agreements to reduce greenhouse gas emissions, electricity sector restructuring, high power reliability requirements for certain activities, and concern about easing transmission and distribution capacity bottlenecks and congestion. So it is necessary that impact of these kinds of generators on distribution feeder reconfiguration would be investigated. This paper presents an approach for distribution reconfiguration considering Distributed Generators (DGs). The objective function is summation of electrical power losses A Tabu search optimization is used to solve the optimal operation problem. The approach is tested on a real distribution feeder.

Solar Energy Collection using a Double-layer Roof

The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.

Technology Based Learning Environment and Student Achievement in English as a Foreign Language in Pakistan

The fast growing accessibility and capability of emerging technologies have fashioned enormous possibilities of designing, developing and implementing innovative teaching methods in the classroom. The global technological scenario has paved the way to new pedagogies in teaching-learning process focusing on technology based learning environment and its impact on student achievement. The present experimental study was conducted to determine the effectiveness of technology based learning environment on student achievement in English as a foreign language. The sample of the study was 90 students of 10th grade of a public school located in Islamabad. A pretest- posttest equivalent group design was used to compare the achievement of the two groups. A Pretest and A posttest containing 50 items each from English textbook were developed and administered. The collected data were statistically analyzed. The results showed that there was a significant difference between the mean scores of Experimental group and the Control group. The performance of Experimental group was better on posttest scores that indicted that teaching through technology based learning environment enhanced the achievement level of the students. On the basis of the results, it was recommended that teaching and learning through information and communication technologies may be adopted to enhance the language learning capability of the students.

Conservation Techniques for Soil Erosion Control in Tobacco-Based Farming System at Steep Land Areas of Progo Hulu Subwatershed, Central Java, Indonesia

This research was aimed at determining the impact of conservation techniques including bench terrace, stone terrace, mulching, grass strip and intercropping on soil erosion at tobacco-based farming system at Progo Hulu subwatershed, Central Java, Indonesia. Research was conducted from September 2007 to September 2009, located at Progo Hulu subwatershed, Central Java, Indonesia. Research site divided into 27 land units, and experimental fields were grouped based on the soil type and slope, ie: 30%, 45% and 70%, with the following treatments: 1) ST0= stone terrace (control); 2) ST1= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 3) ST2= stone terrace + Setaria spacelata grass strip on a 5 cm height dike at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 4) ST3= stone terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). 5) BT0= bench terrace (control); 6) BT1= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 50% (7 ton/ ha); 7) BT2= bench terrace + Setaria spacelata grass strip at terrace lips + tobacco stem mulch with dose of 100% (14 ton/ ha); 8) BT3= bench terrace + tobacco and red bean intercropping + tobacco stem mulch with dose of 50% (7 ton/ ha). The results showed that the actual erosion rates of research site were higher than that of tolerance erosion with mean value 89.08 ton/ha/year and 33.40 ton/ha/year, respectively. These resulted in 69% of total research site (5,119.15 ha) highly degraded. Conservation technique of ST2 was the most effective in suppressing soil erosion, by 42.87%, following with BT2 as much 30.63%. Others suppressed erosion only less than 21%.

A CT-based Monte Carlo Dose Calculations for Proton Therapy Using a New Interface Program

The purpose of this study is to introduce a new interface program to calculate a dose distribution with Monte Carlo method in complex heterogeneous systems such as organs or tissues in proton therapy. This interface program was developed under MATLAB software and includes a friendly graphical user interface with several tools such as image properties adjustment or results display. Quadtree decomposition technique was used as an image segmentation algorithm to create optimum geometries from Computed Tomography (CT) images for dose calculations of proton beam. The result of the mentioned technique is a number of nonoverlapped squares with different sizes in every image. By this way the resolution of image segmentation is high enough in and near heterogeneous areas to preserve the precision of dose calculations and is low enough in homogeneous areas to reduce the number of cells directly. Furthermore a cell reduction algorithm can be used to combine neighboring cells with the same material. The validation of this method has been done in two ways; first, in comparison with experimental data obtained with 80 MeV proton beam in Cyclotron and Radioisotope Center (CYRIC) in Tohoku University and second, in comparison with data based on polybinary tissue calibration method, performed in CYRIC. These results are presented in this paper. This program can read the output file of Monte Carlo code while region of interest is selected manually, and give a plot of dose distribution of proton beam superimposed onto the CT images.

Surveillance of Super-Extended Objects: Bimodal Approach

This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.

Security Management System of Cellular Communication: Case Study

Cellular communication is being widely used by all over the world. The users of handsets are increasing due to the request from marketing sector. The important aspect that has to be touch in this paper is about the security system of cellular communication. It is important to provide users with a secure channel for communication. A brief description of the new GSM cellular network architecture will be provided. Limitations of cellular networks, their security issues and the different types of attacks will be discussed. The paper will go over some new security mechanisms that have been proposed by researchers. Overall, this paper clarifies the security system or services of cellular communication using GSM. Three Malaysian Communication Companies were taken as Case study in this paper.

A Novel Four-Transistor SRAM Cell with Low Dynamic Power Consumption

This paper presents a novel CMOS four-transistor SRAM cell for very high density and low power embedded SRAM applications as well as for stand-alone SRAM applications. This cell retains its data with leakage current and positive feedback without refresh cycle. The new cell size is 20% smaller than a conventional six-transistor cell using same design rules. Also proposed cell uses two word-lines and one pair bit-line. Read operation perform from one side of cell, and write operation perform from another side of cell, and swing voltage reduced on word-lines thus dynamic power during read/write operation reduced. The fabrication process is fully compatible with high-performance CMOS logic technologies, because there is no need to integrate a poly-Si resistor or a TFT load. HSPICE simulation in standard 0.25μm CMOS technology confirms all results obtained from this paper.

Exploring the Ambiguity Resolution in Spacecraft Attitude Determination Using GNSS Phase Measurement

Attitude Determination (AD) of a spacecraft using the phase measurements of the Global Navigation Satellite System (GNSS) is an active area of research. Various attitude determination algorithms have been developed in yester years for spacecrafts using different sensors but the last two decades have witnessed a phenomenal increase in research related with GPS receivers as a stand-alone sensor for determining the attitude of satellite using the phase measurements of the signals from GNSS. The GNSS-based Attitude determination algorithms have been experimented in many real missions. The problem of AD algorithms using GNSS phase measurements has two important parts; the ambiguity resolution and the determining of attitude. Ambiguity resolution is the widely addressed topic in literature for implementing the AD algorithm using GNSS phase measurements for achieving the accuracy of millimeter level. This paper broadly overviews the different techniques for resolving the integer ambiguities encountered in AD using GNSS phase measurements.