CFD Parametric Study of Mixers Performance

The mixing of two or more liquids is very common in many industrial applications from automotive to food processing. CFD simulations of these processes require comparison with test results. In many cases it is practically impossible. Therefore, comparison provides with scalable tests.  So, parameterization of the problem is sufficient to capture the performance of the mixer. However, the influence of geometrical and thermo-physical parameters on the mixing is not well understood. In this work influence of geometrical and thermal parameters was studied. It was shown that for full developed turbulent flows (Re > 104), Pet»const and concentration of secondary fluid ~ F(r/l). In other words, the mixing is practically independent of total flow rate and scale for a given geometry and ratio of flow rates of mixing flows. This statement was proved in present work for different geometries and mixtures such as EGR and water-urea mixture. Present study has been shown that the best way to improve the mixing is to establish geometry with the lowest Pet number possible by intensifying the turbulence in the domain. This is achievable by using step geometry, impinging flow EGR on a wall, or EGR jets, with a strong change in the flow direction, or using swirler like flow in the domain or combination all of these factors. All of these results are applicable to any mixtures of no compressible fluids.  

Experimental Investigation of Surface Roughness Effect on Single Phase Fluid Flow and Heat Transfer in Micro-Tube

An experimental investigation was conducted to study the effect of surface roughness on friction factor and heat transfer characteristics in single-phase fluid flow in a stainless steel micro-tube having diameter of 0.85 mm and average internal surface roughness of 1.7 μm with relative surface roughness of 0.002. Distilled water and R134a liquids were used as the working fluids and testing was conducted with Reynolds numbers ranging from 100 to 10,000 covering laminar, transition and turbulent flow conditions. The experiments were conducted with the micro-tube oriented horizontally with uniform heat fluxes applied at the test section. The results indicated that the friction factor of both water and R134a can be predicted by the Hagen-Poiseuille equation for laminar flow and the modified Miller correlation for turbulent flow and early transition from laminar to turbulent flows. The heat transfer results of water and R134a were in good agreement with the conventional theory in the laminar flow region and lower than the Adam’s correlation for turbulent flow region which deviates from conventional theory.

Confidence Intervals for the Coefficients of Variation with Bounded Parameters

In many practical applications in various areas, such as engineering, science and social science, it is known that there exist bounds on the values of unknown parameters. For example, values of some measurements for controlling machines in an industrial process, weight or height of subjects, blood pressures of patients and retirement ages of public servants. When interval estimation is considered in a situation where the parameter to be estimated is bounded, it has been argued that the classical Neyman procedure for setting confidence intervals is unsatisfactory. This is due to the fact that the information regarding the restriction is simply ignored. It is, therefore, of significant interest to construct confidence intervals for the parameters that include the additional information on parameter values being bounded to enhance the accuracy of the interval estimation. Therefore in this paper, we propose a new confidence interval for the coefficient of variance where the population mean and standard deviation are bounded. The proposed interval is evaluated in terms of coverage probability and expected length via Monte Carlo simulation.  

Data Mining Determination of Sunlight Average Input for Solar Power Plant

A method is proposed to extract faithful representative patterns from data set of observations when they are suffering from non-negligible fluctuations. Supposing time interval between measurements to be extremely small compared to observation time, it consists in defining first a subset of intermediate time intervals characterizing coherent behavior. Data projection on these intervals gives a set of curves out of which an ideally “perfect” one is constructed by taking the sup limit of them. Then comparison with average real curve in corresponding interval gives an efficiency parameter expressing the degradation consecutive to fluctuation effect. The method is applied to sunlight data collected in a specific place, where ideal sunlight is the one resulting from direct exposure at location latitude over the year, and efficiency is resulting from action of meteorological parameters, mainly cloudiness, at different periods of the year. The extracted information already gives interesting element of decision, before being used for analysis of plant control.

Objective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

In this paper problem of edge detection in digital images is considered. Edge detection based on morphological operators was applied on two sets (brain & chest) ct images. Three methods of edge detection by applying line morphological filters with multi structures in different directions have been used. 3x3 filter for first method, 5x5 filter for second method, and 7x7 filter for third method. We had applied this algorithm on (13 images) under MATLAB program environment. In order to evaluate the performance of the above mentioned edge detection algorithms, standard deviation (SD) and peak signal to noise ratio (PSNR) were used for justification for all different ct images. The objective method and the comparison of different methods of edge detection,  shows that high values of both standard deviation and PSNR values of edge detection images were obtained. 

Thyroids Dose Evaluation and Calculation of Backscatter Factors for Co-60 Irradiations

The aim of the study is evaluation of absorbed doses for thyroids by using neck phantoms. For this purpose, it was arranged the irradiation set with different phantoms. Three different materials were used for phantom materials as, water, parafine and wood. The phantoms were three different dimensions for simulation of different ages and human race for each material. Co-60 gammao source was used for irradiation and the experimental procedure applied rigorously with narrow beam geometry.  As the results of the experiments the relative radiation doses are evaluated for therapic applications for thyroids and backscattering factors were calculated and shown that water, parafine and wood can appropriate for phantom material with the converge values of backscattering factors.

Citizens’ Perceptions towards e-Governance: Field Study

E-governance is an emerging and challenging initiative in developing countries. It is not only concerning the provision of services through the use ICT but rather entails building external interactions with citizen and businesses, enhancing democracy and trust of the political institutions of government. It embraces among other principles, openness, accountability and citizen engagement in public policy process. This study aims at finding users’ satisfaction with three chosen dimensions of e-governance, namely: openness, collaborative governance, and participation. These dimensions of e-governance are neither studied before in the context of Arab countries and nor explored earlier in relation to some demographics variables. A study of 900 users of e-government in United Arab Emirates (UAE) was undertaken to examine how gender, age, education, nationality, and employment affect their satisfaction with e-governance. Generally, satisfaction ratings vary significantly with these variables. However, the overall level of satisfaction with the three attributes was less favorable. Knowing the differences of  citizen’s perceptions towards e-governance services would help policymakers in the design of effective e-governance strategy.   

Hybrid System Configurations and Charging Strategies for Isolated Electric Tuk-Tuk Charging Station in South Africa

The success of renewable powered electric vehicle charging station in isolated areas depends highly on the availability and sustainability of renewable resources all year round at a selected location. The main focus of this paper is to discuss the possible charging strategies that could be implemented to find the best possible configuration of an electric Tuk-Tuk charging station at a given location within South Africa. The charging station is designed, modeled and simulated to evaluate its performances. The technoeconomic analysis of different feasible supply configurations of the charging station using renewable energies is simulated using HOMER software and the results compared in order to select the best possible charging strategies in terms of cost of energy consumed.

Parametric Analysis on Information Technology Adoption and Organizational Efficiency in Northern Nigeria

The adoption and diffusion of Information Technology (IT) is one of the fastest growing trends in organizations operating within Nigeria’s economy. Public and private organizations make huge capital investments in an attempt acquire and adopt the state-of-the-art IT for improving operational efficiency. In this study the level of IT adoption is considered the primary driver of efficiency witnessed by organizations. The research gathered data on the intensity of IT usage, and resultant efficiency increase in the organizations’ operations. The data was analyzed using multiple regression analysis and reveals that high level of IT usage has enhance efficiency of private and public organizations in Northern part of Nigeria with organizations having strategic intent on IT adoption indicating higher efficiency gains.

The Effect of Micro Tools Fabricated Dent on Alumina/Alumina Oxide Interface

The tribological outcomes of micro dent are found to be outstanding in many engineering and natural surfaces. Ceramic (Al2O3) is considered one of the most potential material to bearing surfaces particularly, artificial hip or knee implant. A well-defined micro dent on alumina oxide interface could further decrease friction and wear rate, thus increase their stability and durability. In this study we fabricated circular micro dent surface profiles (Dia: 400µm, Depth 20µm, P: 1.5mm; Dia: 400µm, Depth 20µm, P: 2mm) on pure Al2O3 (99.6%) substrate by using a micro tool machines. A preliminary tribological experiment was carried out to compare friction coefficient of these fabricated dent surfaces with that of non-textured surfaces. The experiment was carried on well know pin-on-disk specimens while other experimental parameters such as hertz pressure, speed, lubrication, and temperature were maintained to standard of simulated hip joints condition. The experiment results revealed that micro dent surface texture reduced 15%, 8% and 4% friction coefficient under 0.132,0.162, 0.187 GPa contact pressure respectively. Since this is a preliminary tribological study, we will pursue further experiments considering higher ranges of dent profiles and longer run experiments. However, the preliminary results confirmed the suitability of fabricating dent profile to ceramic surfaces by using micro tooling, and also their improved tribological performance in simulated hip joints.

Elicitation of Requirements for a Knowledge Management Concept in Decentralized Production Planning

The planning in manufacturing system is becoming complicated day by day due to the expanding networks and shortage of skilled people to manage change. Consequently, faster lead time and rising demands for eco-efficient evaluation of manufacturing products and processes need exploitation of new and intelligent knowledge management concepts for manufacturing planning. This paper highlights motivation for incorporation of new features in the manufacturing planning system. Furthermore, it elaborates requirements for the development of intelligent knowledge management concept to support planning related decisions. Afterwards, the derived concept is presented in this paper considering two case studies. The first case study is concerned with the automotive ramp-up planning. The second case study specifies requirements for knowledge management system to support decisions in eco-efficient evaluation of manufacturing products and processes

Optimising Data Transmission in Heterogeneous Sensor Networks

The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data.  This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI.  Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.

Analog Front End Low Noise Amplifier in 0.18-µm CMOS for Ultrasound Imaging Applications

We present the design of Analog front end (AFE) low noise pre-amplifier implemented in a high voltage 0.18-µm CMOS technology for  a three dimensional ultrasound  bio microscope (3D UBM) application. The fabricated chip has 4X16 pre-amplifiers implemented to interface   a 2-D array of    high frequency capacitive micro-machined ultrasound transducers (CMUT). Core AFE cell consists of a high-voltage pulser in the transmit path, and a low-noise transimpedance amplifier in the receive path. Proposed system offers a high image resolution by the use of high frequency CMUTs with associated high performance imaging electronics integrated together.  Performance requirements and the design methods of the high bandwidth transimpedance amplifier are described in the paper. A single cell of transimpedance (TIA) amplifier and the bias circuit occupies a silicon area of 250X380 µm2 and the full chip occupies a total silicon area of 10x6.8 mm².

Carbon Nanotubes–A Successful Hydrogen Storage Medium

Hydrogen fuel is a zero-emission fuel which uses electrochemical cells or combustion in internal engines, to power vehicles and electric devices. Methods of   hydrogen storage for subsequent use span many approaches, including high pressures, cryogenics and chemical compounds that reversibly release H2 upon heating. Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications. With the accelerating demand for cleaner and more efficient energy sources, hydrogen research has attracted more attention in the scientific community. Until now, full implementation of a hydrogen-based energy system has been hindered in part by the challenge of storing hydrogen gas, especially onboard an automobile. New techniques being researched may soon make hydrogen storage more compact, safe and efficient. In   this overview, few hydrogen storage methods and mechanism of hydrogen uptake in carbon nanotubes are summarized.

Current Mode Logic Circuits for 10-bit 5GHz High Speed Digital to Analog Converter

This paper presents CMOS Current Mode Logic (CML) circuits for a high speed Digital to Analog Converter (DAC) using standard CMOS 65nm process. The CML circuits have the propagation delay advantage over its conventional CMOS counterparts due to smaller output voltage swing and tunable bias current. The CML circuits proposed in this paper can achieve a maximum propagation delay of only 9.3ps, which can satisfy the stringent requirement for the 5 GHz high speed DAC application. Another advantage for CML circuits is its dynamic symmetry characteristic resulting in a reduction of an additional inverter. Simulation results show that the proposed CML circuits can operate from 1.08V to 1.3V with temperature ranging from -40 to +120°C.

Novel Process Formulation of Multiple Unit Tablet of Pantoprazole

The present invention relates to multiple-unit tablet dosage forms, which is composed of several subunits (multiparticulates/pellets). Each small multiparticulate further composed of many layers. Some layer contains drug substance; others are rate controlling polymer. The resulting multiple-unit tablet dosage forms of pantoprazole were satisfactory fabricated. Pelletization technique has some advantages over coated tablet formulation. In coated tablet the coating may be damaged and a pinhole possibly formed that would result in increased release of drug in stomach and may be deactivated in stomach juices. If the coat of some pellets may be damaged that would not affect the release properties of the multiple-unit tablet. Hence they are beneficial in this aspect. The results confirmed the successful preparation of stable and bioequivalent once daily controlled release multiple-unit tablets of pantoprazole.

Oxide Based Resistive Random Access Memory Device for High Density Non Volatile Memory Applications

In this work, we demonstrated vertical RRAM device fabricated at the sidewall of contact hole structures for possible future 3-D stacking integrations. The fabricated devices exhibit polarity dependent bipolar resistive switching with small operation voltage of less than 1V for both set and reset process. A good retention of memory window ~50 times is maintained after 1000s voltage bias.

Switching Behaviors of HfO2/NiSix Based RRAM

This paper presents a study of Ni-silicides as the bottom electrode of HfO2-based RRAM. Various silicidation conditions were used to obtain different Ni concentrations within the Ni-silicide bottom electrode, namely Ni2Si, NiSi, and NiSi2. A 10nm HfO2 switching material and 50nm TiN top electrode was then deposited and etched into 500nm by 500nm square RRAM cells. Cell performance of the Ni2Si and NiSi cells were good, while the NiSi2 cell could not switch reliably, indicating that the presence of Ni in the bottom electrode is important for good switching.

Study of Incineration of Acacia Wood Chips for Biomass Power Plant of the Royal Thai Navy in Sattahip, Chonburi Province, Thailand

This research is aimed to find optimal values of parameters of acacia wood chips combustion in a bubbling fluidized bed for electrification within the area of the Royal Thai Navy in Sattahip, Chonburi province, Thailand. The size of wood chips falls in the range of 25 mm in diameter. The bed temperature is set within the range of 800±10 oC with the air flow rate of 2.1-3.1 m/min corresponding to the air-fuel ratio between 0.71 to 1.03. The resulting thermal efficiency is approximately 95% with a thermal output of 474.76 kWth, which produced the electricity 0.131 kW-hr.

Efficacy and Stability of Ceramic Powder to Inactivate Avian Influenza Virus

This experiment aims to demonstrate the efficacy of ceramic powder derived from various sources to inactivate avian influenza virus and its possibility to use in the environment. The ceramics used in the present experiment were derived from chicken feces (CF), scallop shell (SS), polyvinyl chloride (PVC) and soybean (SB). All ceramics were mixed with low pathogenic AIV (LPAIV) H7N1, and then kept at room temperature. The recovered virus was titrated onto Madin-Darby canine kidney (MDCK) cells. All ceramics were assessed the inactivation stability in the environment by keeping under sunlight and under wet-dry condition until reached 7 week or 7 resuspension times respectively. The results indicate that all ceramics have excellent efficacy to inactivate LPAIV. This efficacy can be maintained under the simulated condition. The ceramics are expected to be the good materials for application in the biosecurity system at farms.