Metal Streak Analysis with different Acquisition Settings in Postoperative Spine Imaging: A Phantom Study

CT assessment of postoperative spine is challenging in the presence of metal streak artifacts that could deteriorate the quality of CT images. In this paper, we studied the influence of different acquisition parameters on the magnitude of metal streaking. A water-bath phantom was constructed with metal insertion similar with postoperative spine assessment. The phantom was scanned with different acquisition settings and acquired data were reconstructed using various reconstruction settings. Standardized ROIs were defined within streaking region for image analysis. The result shows increased kVp and mAs enhanced SNR values by reducing image noise. Sharper kernel enhanced image quality compared to smooth kernel, but produced more noise in the images with higher CT fluctuation. The noise between both kernels were significantly different (P

A Nobel Approach for Campus Monitoring

This paper presents one of the best applications of wireless sensor network for campus Monitoring. With the help of PIR sensor, temperature sensor and humidity sensor, effective utilization of energy resources has been implemented in one of rooms of Sharda University, Greater Noida, India. The RISC microcontroller is used here for analysis of output of sensors and providing proper control using ZigBee protocol. This wireless sensor module presents a tremendous power saving method for any campus

Recent Developments in Electric Vehicles for Passenger Car Transport

Electric vehicles are considered as technology which can significantly reduce the problems related to road transport such as increasing GHG emissions, air pollutions and energy import dependency. The core objective of this paper is to analyze the current energetic, ecological and economic characteristics of different types of electric vehicles. The major conclusions of this analysis are: The high investments cost are the major barrier for broad market breakthrough of battery electric vehicles and fuel cell vehicles. For battery electric vehicles also the limited driving range states a key obstacle. The analyzed hybrids could in principle serve as a bridging technology. However, due to their tank-to-wheel emissions they cannot state a proper solution for urban areas. Finally, the most important perception is that also battery electric vehicles and fuel cell vehicles are environmentally benign solution if the primary fuel source is renewable.

The Application of an Experimental Design for the Defect Reduction of Electrodeposition Painting on Stainless Steel Washers

The purpose of this research is to reduce the amount of incomplete coating of stainless steel washers in the electrodeposition painting process by using an experimental design technique. The surface preparation was found to be a major cause of painted surface quality. The influence of pretreating and painting process parameters, which are cleaning time, chemical concentration and shape of hanger were studied. A 23 factorial design with two replications was performed. The analysis of variance for the designed experiment showed the great influence of cleaning time and shape of hanger. From this study, optimized cleaning time was determined and a newly designed electrical conductive hanger was proved to be superior to the original one. The experimental verification results showed that the amount of incomplete coating defects decreased from 4% to 1.02% and operation cost decreased by 10.5%.

The Analysis of Radial/Axial Error Motion on a Precision Rotation Stage

Rotating stages in semiconductor, display industry and many other fields require challenging accuracy to perform their functions properly. Especially, Axis of rotation error on rotary system is significant; such as the spindle error motion of the aligner, wire bonder and inspector machine which result in the poor state of manufactured goods. To evaluate and improve the performance of such precision rotary stage, unessential movements on the other 5 degrees of freedom of the rotary stage must be measured and analyzed. In this paper, we have measured the three translations and two tilt motions of a rotating stage with high precision capacitive sensors. To obtain the radial error motion from T.I.R (Total Indicated Reading) of radial direction, we have used Donaldson's reversal technique. And the axial components of the spindle tilt error motion can be obtained accurately from the axial direction outputs of sensors by Estler face motion reversal technique. Further more we have defined and measured the sensitivity of positioning error to the five error motions.

Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform

Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.

MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network

The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.

A New Fuzzy Decision Support Method for Analysis of Economic Factors of Turkey's Construction Industry

Imperfect knowledge cannot be avoided all the time. Imperfections may have several forms; uncertainties, imprecision and incompleteness. When we look to classification of methods for the management of imperfect knowledge we see fuzzy set-based techniques. The choice of a method to process data is linked to the choice of knowledge representation, which can be numerical, symbolic, logical or semantic and it depends on the nature of the problem to be solved for example decision support, which will be mentioned in our study. Fuzzy Logic is used for its ability to manage imprecise knowledge, but it can take advantage of the ability of neural networks to learn coefficients or functions. Such an association of methods is typical of so-called soft computing. In this study a new method was used for the management of imprecision for collected knowledge which related to economic analysis of construction industry in Turkey. Because of sudden changes occurring in economic factors decrease competition strength of construction companies. The better evaluation of these changes in economical factors in view of construction industry will made positive influence on company-s decisions which are dealing construction.

Implementation of Vertical Neutron Camera (VNC) for ITER Fusion Plasma Neutron Source Profile Reconstruction

In present work the problem of the ITER fusion plasma neutron source parameter reconstruction using only the Vertical Neutron Camera data was solved. The possibility of neutron source parameter reconstruction was estimated by the numerical simulations and the analysis of adequateness of mathematic model was performed. The neutron source was specified in a parametric form. The numerical analysis of solution stability with respect to data distortion was done. The influence of the data errors on the reconstructed parameters is shown: • is reconstructed with errors less than 4% at all examined values of δ (until 60%); • is determined with errors less than 10% when δ do not overcome 5%; • is reconstructed with relative error more than 10 %; • integral intensity of the neutron source is determined with error 10% while δ error is less than 15%; where -error of signal measurements, (R0,Z0), the plasma center position,- /parameter of neutron source profile.

Hubs as Catalysts for Geospatial Communication in Kinship Networks

Earlier studies in kinship networks have primarily focused on observing the social relationships existing between family relatives. In this study, we pre-identified hubs in the network to investigate if they could play a catalyst role in the transfer of physical information. We conducted a case study of a ceremony performed in one of the families of a small Hindu community – the Uttar Rarhi Kayasthas. Individuals (n = 168) who resided in 11 geographically dispersed regions were contacted through our hub-based representation. We found that using this representation, over 98% of the individuals were successfully contacted within the stipulated period. The network also demonstrated a small-world property, with an average geodesic distance of 3.56.

Strategic Regional Identity for Health and Wellness Lodging

This research aimed to study the competency of health and wellness hotels and resorts in developing use the local natural resources and wisdom to conform to the national health and wellness tourism (HWT) strategy by comparing two independent samples, from Aumpur Muang, Ranong province and Aumpur Muang, Chiangmai province. And also study in the suggestive direct path to lead the organization to the sustainable successful. This research was conduct by using mix methodology; both quantitative and qualitative data were used. The data of competency of health and wellness hotels and resorts (HWHR) in developing use the local natural resources for HWT promoting were collected via 300 set of questionnaires, from 6 hotels and resorts in 2 areas, 3 places from Aumpur Muang, Ranong province and another 3 from Aumpur Muang, Chiangmai province. Thestudy of HWHR’s competency in developing use the local natural resources and wisdom to conform to the national HWT strategycan be divided into fourmain areas, food and beverages service, tourism activity, environmental service, and value adding. The total competency of the Chiangmai sample is importantly scoredp. value 0.01 higher than the Ranong one while the area of safety, Chiangmai’s competency is importantly scored 0.05 higher than the Ranong’scompetency. Others were rated not differently. Since Chiangmai perform better, then it can be a role model in developing HTHR or HWT destination. From the part of qualitative research, content analysis of business contents and its environments were analyzed. The four stages of strategic development and plans, from the smallest scale to the largest scale such a national base were discussed. The HWT: Evolution model and strategy for lodging Business were suggested. All those stages must work harmoniously together. The distinctive result illustrates the need of human resource development as the key point to create the identity of Thainess on Health and wellness service providing. This will add-on the value of services and differentiates ourselves from other competitors. The creative of Thailand’s health and wellness brand possibly increase loyalty customers which agreed to be a path of sustainable development.

Delay-Dependent Stability Analysis for Neutral Type Neural Networks with Uncertain Parameters and Time-Varying Delay

In this paper, delay-dependent stability analysis for neutral type neural networks with uncertain paramters and time-varying delay is studied. By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments, a novel sufficient condition is established to guarantee the globally asymptotically stability of the considered system. Finally, a numerical example is provided to illustrate the usefulness of the proposed main results.

Generic Filtering of Infinite Sets of Stochastic Signals

A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Visual-Graphical Methods for Exploring Longitudinal Data

Longitudinal data typically have the characteristics of changes over time, nonlinear growth patterns, between-subjects variability, and the within errors exhibiting heteroscedasticity and dependence. The data exploration is more complicated than that of cross-sectional data. The purpose of this paper is to organize/integrate of various visual-graphical techniques to explore longitudinal data. From the application of the proposed methods, investigators can answer the research questions include characterizing or describing the growth patterns at both group and individual level, identifying the time points where important changes occur and unusual subjects, selecting suitable statistical models, and suggesting possible within-error variance.

The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria

Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.

Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Observation and Study of Landslides Affecting the Tangier – Oued R’mel Motorway Segment

The motorway segment between Tangier and Oued R’mel has experienced, since the beginning of building works, significant instability and landslides linked to a number of geological, hydrogeological and geothermic factors affecting the different formations. The landslides observed are not fully understood, despite many studies conducted on this segment. This study aims at producing new methods to better explain the phenomena behind the landslides, taking into account the geotechnical and geothermic contexts. This analysis builds up on previous studies and geotechnical data collected in the field. The final body of data collected shall be processed through the Plaxis software for a better and customizable view of the landslide problems in the area, which will help tofind solutions and stabilize land in the area.

Rehabilitation of Reinforced Concrete Columns

In recent years, rehabilitation has been the subject of extensive research due to increased spending on building work and repair of built works. In all cases, it is absolutely essential to carry out methods of strengthening or repair of structural elements, and that following an inspection analysis and methodology of a correct diagnosis. The reinforced concrete columns are important elements in building structures. They support the vertical loads and provide bracing against the horizontal loads. This research about the behavior of reinforced concrete rectangular columns, rehabilitated by concrete liner, confinement FRP fabric, steel liner or cage formed by metal corners. It allows comparing the contributions of different processes used perspective section resistance elements rehabilitated compared to that is not reinforced or repaired. The different results obtained revealed a considerable gain in bearing capacity failure of reinforced sections cladding concrete, metal bracket, steel plates and a slight improvement to the section reinforced with fabric FRP. The use of FRP does not affect the weight of the structures, but the use of different techniques cladding increases the weight of elements rehabilitated and therefore the weight of the building which requires resizing foundations.

Analysis of a PWM Boost Inverter for Solar Home Application

Solar Cells are destined to supply electric energy beginning from primary resources. It can charge a battery up to 12V dc. For residential use an inverter for 12V dc to 220Vac conversion is desired. For this a static DC-AC converter is necessarily inserted between the solar cells and the distribution network. This paper describes a new P.W.M. strategy for a voltage source inverter. This modulation strategy reduces the energy losses and harmonics in the P.W.M. voltage source inverter. This technique allows the P.W.M. voltage source inverter to become a new feasible solution for solar home application.

Degradation Model of Optical Characteristics of Zno-Pigmented White Paint by Electron Radiation

Based on an analysis of the mechanism of degradation of optical characteristics of the ZnO-pigmented white paint by electron irradiation, a model of single molecular color centers is built. An equation that explains the relationship between the changes of variation of the ZnO-pigmented white paint-s spectrum absorptance and electron fluence is derived. The uncertain parameters in the equation can be calculated using the curve fitting by experimental data. The result indicates that the model can be applied to predict the degradation of optical characteristics of ZnO-pigmented white paint by electron radiation.