Existence and Stability of Anti-periodic Solutions for an Impulsive Cohen-Grossberg SICNNs on Time Scales

By using the method of coincidence degree and constructing suitable Lyapunov functional, some sufficient conditions are established for the existence and global exponential stability of antiperiodic solutions for a kind of impulsive Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNs) on time scales. An example is given to illustrate our results.

Stability of Alliances between Service Providers

Three service providers in competition, try to optimize their quality of service / content level and their service access price. But, they have to deal with uncertainty on the consumers- preferences. To reduce their uncertainty, they have the opportunity to buy information and to build alliances. We determine the Shapley value which is a fair way to allocate the grand coalition-s revenue between the service providers. Then, we identify the values of β (consumers- sensitivity coefficient to the quality of service / contents) for which allocating the grand coalition-s revenue using the Shapley value guarantees the system stability. For other values of β, we prove that it is possible for the regulator to impose a per-period interest rate maximizing the market coverage under equal allocation rules.

Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis

In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.

An Investigation of the Cu-Ni Compound Cathode Materials Affecting on Transient Recovery Voltage

The purpose of this research was to analyze and compare the instability of a contact surface between Copper and Nickel an alloy cathode in vacuum, the different ratio of Copper and Copper were conducted at 1%, 2% and 4% by using the cathode spot model. The transient recovery voltage is predicted. The cathode spot region is recognized as the collisionless space charge sheath connected with singly ionized collisional plasma. It was found that the transient voltage is decreased with increasing the percentage of an amount of Nickel in cathode materials.

Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft

This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.

Value Stream Oriented Inventory Management

Producing companies aspire to high delivery availability despite appearing disruptions. To ensure high delivery availability safety stocksare required. Howeversafety stock leads to additional capital commitment and compensates disruptions instead of solving the reasons.The intention is to increase the stability in production by configuring the production planning and control systematically. Thus the safety stock can be reduced. The largest proportion of inventory in producing companies is caused by batch inventory, schedule deviations and variability of demand rates.These reasons for high inventory levels can be reduced by configuring the production planning and control specifically. Hence the inventory level can be reduced. This is enabled by synchronizing the lot size straightening the demand as well as optimizing the releasing order, sequencing and capacity control.

Instability of Ties in Compression

Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis.

Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.

Slip Suppression of Electric Vehicles using Model Predictive PID Controller

In this paper, a new model predictive PID controller design method for the slip suppression control of EVs (electric vehicles) is proposed. The proposed method aims to improve the maneuverability and the stability of EVs by controlling the wheel slip ratio. The optimal control gains of PID framework are derived by the model predictive control (MPC) algorithm. There also include numerical simulation results to demonstrate the effectiveness of the method.

Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain

In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

A Study on Polymer Coated Colour Pigments for Water-Based Ink

The pigments covered by film-forming polymers have opened a prospect to improve the quality of water-based printing inks. In this study such pigments were prepared by the initiated polymerization of styrene and methacrylate derivative monomers in the aqueous pigment dispersions. The formation of polymer films covering pigment cores depends on the polymerization time and the ratio of pigment to monomers. At the time of 4 hours and the ratio of 1/10 almost pigment particles are coated by the polymer. The formed polymer covers of pigments have the average thickness of 5.95 nm. The size increasing percentage of the coated particles after a week is 4.5 %, about fourteen-fold lower than of the original ones. The obtained results indicate that the coated pigments are improved dispersion stability in water medium along with a guarantee for the optical colour.

Maintenance of Philosophical, Humanistic and Religious Values of Security of the Kazakh Nation

People have always needed to believe in some supernatural power, which could explain nature phenomena. Different kinds of religions like Christianity, Hinduism, Islam, Buddhism have thought believers in all world, how to behave themselves. We think the most important role of religion in modern society most important role of religion in modern society is safety of the People. World and traditional religion played a prominent role in the socio-cultural progress, and in the development of man as a spiritual being. At the heart of religious morals the belief in god and responsibility before it lies and specifies religious and ethical values and categories . The religion is based on ethical standards historically developed by society, requirements and concepts, but it puts all social and moral relations of the person in dependence on religious values. For everything that the believer makes on a debt or a duty, he bears moral responsibility before conscience, people and god. The concept of value of religious morals takes the central place because the religion from all forms of public consciousness most values is painted as it is urged to answer vital questions. Any religion not only considers questions of creation of the world, sense of human existence, relationship of god and the person, but also offers the ethical concept, develops rules of behavior of people. The religion a long time dominated in the history of culture, and during this time created a set of cultural and material values. The identity of Kazakh culture can be defined as a Cultural identity traditional ,national identity and the identity values developed by Kazakh people in process of cultural-historical development, promoting formation of Kazakh culture identity on public consciousness. Identity is the historical process but always the tradition exists in it as a component of stability, as a component of self that what this identity formed .

Nonlinear Dynamics of Cracked RC Beams under Harmonic Excitation

Nonlinear response behaviour of a cracked RC beam under harmonic excitation is analysed to investigate various instability phenomena like, bifurcation, jump phenomena etc. The nonlinearity of the system arises due to opening and closing of the cracks in the RC beam and is modelled as a cubic polynomial. In order to trace different branches at the bifurcation point on the response curve (amplitude versus frequency of excitation plot), an arc length continuation technique along with the incremental harmonic balance (IHBC) method is employed. The stability of the solution is investigated by the Floquet theory using Hsu-s scheme. The periodic solutions obtained by the IHBC method are compared with these obtained by the numerical integration of the equation of motion. Characteristics of solutions fold bifurcation, jump phenomena and from stable to unstable zones are identified.

Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays

This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.

Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers

Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.

Novel Design and Analysis of a Brake Rotor

Over the course of the past century, the global automotive industry-s stance towards safety has evolved from one of contempt to one nearing reverence. A suspension system that provides safe handling and cornering capabilities can, with the help of an efficient braking system, improve safety to a large extent. The aim of this research is to propose a new automotive brake rotor design and to compare it with automotive vented disk rotor. Static structural and transient thermal analysis have been carried out on the vented disk rotor and proposed rotor designs to evaluate and compare their performance. Finite element analysis was employed for both static structural and transient thermal analysis. Structural analysis was carried out to study the stress and deformation pattern of the rotors under extreme loads. Time varying temperature load was applied on the rotors and the temperature distribution was analysed considering cooling parameters (convection and radiation). This dissertation illustrates the use of Finite Element Methods to examine models, concluding with a comparative study of the proposed rotor design and the conventional vented disk rotor for structural stability and thermal efficiency.

An Analysis of Global Stability of a Class of Neutral-Type Neural Systems with Time Delays

This paper derives some new sufficient conditions for the stability of a class of neutral-type neural networks with discrete time delays by employing a suitable Lyapunov functional. The obtained conditions can be easily verified as they can be expressed in terms of the network parameters only. It is shown that the results presented in this paper for neutral-type delayed neural networks establish a new set of stability criteria, and therefore can be considered as the alternative results to the previously published literature results. A numerical example is also given to demonstrate the applicability of our proposed stability criterion.

Optimal Controller Design for Linear Magnetic Levitation Rail System

In many applications, magnetic suspension systems are required to operate over large variations in air gap. As a result, the nonlinearities inherent in most types of suspensions have a significant impact on performance. Specifically, it may be difficult to design a linear controller which gives satisfactory performance, stability, and disturbance rejection over a wide range of operating points. in this paper an optimal controller based on discontinuous mathematical model of the system for an electromagnetic suspension system which is applied in magnetic trains has been designed . Simulations show that the new controller can adapt well to the variance of suspension mass and gap, and keep its dynamic performance, thus it is superior to the classic controller.

Intact and ACL-Deficient Knee MODEL Evaluation

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. To produce the necessary joint compliance and stability for optimal daily function various menisci and ligaments are present while muscle forces are used to this effect. Therefore, knowledge of the complex mechanical interactions of these load bearing structures is necessary when treatment of relevant diseases is evaluated and assisting devices are designed. Numerical tools such as finite element analysis are suitable for modeling such joints in order to understand their physics. They have been used in the current study to develop an accurate human knee joint and model its mechanical behavior. To evaluate the efficacy of this articulated model, static load cases were used for comparison purposes with previous experimentally verified modeling works drawn from literature.

Sensitivity of Small Disturbance Angle Stability to the System Parameters of Future Power Networks

The incorporation of renewable energy sources for the sustainable electricity production is undertaking a more prominent role in electric power systems. Thus, it will be an indispensable incident that the characteristics of future power networks, their prospective stability for instance, get influenced by the imposed features of sustainable energy sources. One of the distinctive attributes of the sustainable energy sources is exhibiting the stochastic behavior. This paper investigates the impacts of this stochastic behavior on the small disturbance rotor angle stability in the upcoming electric power networks. Considering the various types of renewable energy sources and the vast variety of system configurations, the sensitivity analysis can be an efficient breakthrough towards generalizing the effects of new energy sources on the concept of stability. In this paper, the definition of small disturbance angle stability for future power systems and the iterative-stochastic way of its analysis are presented. Also, the effects of system parameters on this type of stability are described by performing a sensitivity analysis for an electric power test system.