Effect of Teaching Games for Understanding Approach on Students- Cognitive Learning Outcome

The study investigated the effects of Teaching Games for Understanding approach on students ‘cognitive learning outcome. The study was a quasi-experimental non-equivalent pretest-posttest control group design whereby 10 year old primary school students (n=72) were randomly assigned to an experimental and a control group. The experimental group students were exposed with TGfU approach and the control group with the Traditional Skill approach of handball game. Game Performance Assessment Instrument (GPAI) was used to measure students' tactical understanding and decision making in 3 versus 3 handball game situations. Analysis of covariance (ANCOVA) was used to analyze the data. The results reveal that there was a significant difference between the TGfU approach group and the traditional skill approach group students on post test score (F (1, 69) = 248.83, p < .05). The findings of this study suggested the importance of TGfU approach to improve primary students’ tactical understanding and decision making in handball game.

A Novel Logarithmic Current-Controlled Current Amplifier (LCCA)

A new OTA-based logarithmic-control variable gain current amplifier (LCCA) is presented. It consists of two Operational Transconductance Amplifier (OTA) and two PMOS transistors biased in weak inversion region. The circuit operates from 0.6V DC power supply and consumes 0.6 μW. The linear-dB controllable output range is 43 dB with maximum error less than 0.5dB. The functionality of the proposed design was confirmed using HSPICE in 0.35μm CMOS process technology.

Breast Skin-Line Estimation and Breast Segmentation in Mammograms using Fast-Marching Method

Breast skin-line estimation and breast segmentation is an important pre-process in mammogram image processing and computer-aided diagnosis of breast cancer. Limiting the area to be processed into a specific target region in an image would increase the accuracy and efficiency of processing algorithms. In this paper we are presenting a new algorithm for estimating skin-line and breast segmentation using fast marching algorithm. Fast marching is a partial-differential equation based numerical technique to track evolution of interfaces. We have introduced some modifications to the traditional fast marching method, specifically to improve the accuracy of skin-line estimation and breast tissue segmentation. Proposed modifications ensure that the evolving front stops near the desired boundary. We have evaluated the performance of the algorithm by using 100 mammogram images taken from mini-MIAS database. The results obtained from the experimental evaluation indicate that this algorithm explains 98.6% of the ground truth breast region and accuracy of the segmentation is 99.1%. Also this algorithm is capable of partially-extracting nipple when it is available in the profile.

Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System

In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.

Problem Solving Techniques with Extensive Computational Network and Applying in an Educational Software

Knowledge bases are basic components of expert systems or intelligent computational programs. Knowledge bases provide knowledge, events that serve deduction activity, computation and control. Therefore, researching and developing of models for knowledge representation play an important role in computer science, especially in Artificial Intelligence Science and intelligent educational software. In this paper, the extensive deduction computational model is proposed to design knowledge bases whose attributes are able to be real values or functional values. The system can also solve problems based on knowledge bases. Moreover, the models and algorithms are applied to produce the educational software for solving alternating current problems or solving set of equations automatically.

The Experiences of South-African High-School Girls in a Fab Lab Environment

This paper reports on an effort to address the issue of inequality in girls- and women-s access to science, engineering and technology (SET) education and careers through raising awareness on SET among secondary school girls in South Africa. Girls participated in hands-on high-tech rapid prototyping environment of a fabrication laboratory that was aimed at stimulating creativity and innovation as part of a Fab Kids initiative. The Fab Kids intervention is about creating a SET pipeline as part of the Young Engineers and Scientists of Africa Initiative.The methodology was based on a real world situation and a hands-on approach. In the process, participants acquired a number of skills including computer-aided design, research skills, communication skills, teamwork skills, technical drawing skills, writing skills and problem-solving skills. Exposure to technology enhanced the girls- confidence in being able to handle technology-related tasks.

Markov Chain Monte Carlo Model Composition Search Strategy for Quantitative Trait Loci in a Bayesian Hierarchical Model

Quantitative trait loci (QTL) experiments have yielded important biological and biochemical information necessary for understanding the relationship between genetic markers and quantitative traits. For many years, most QTL algorithms only allowed one observation per genotype. Recently, there has been an increasing demand for QTL algorithms that can accommodate more than one observation per genotypic distribution. The Bayesian hierarchical model is very flexible and can easily incorporate this information into the model. Herein a methodology is presented that uses a Bayesian hierarchical model to capture the complexity of the data. Furthermore, the Markov chain Monte Carlo model composition (MC3) algorithm is used to search and identify important markers. An extensive simulation study illustrates that the method captures the true QTL, even under nonnormal noise and up to 6 QTL.

Immobilization of Aspergillus awamori 1-8 for Subsequent Pectinase Production

The overall objective of this research is a strain improvement technology for efficient pectinase production. A novel cells cultivation technology by immobilization of fungal cells has been studied in long time continuous fermentations. Immobilization was achieved by using of new material for absorption of stores of immobilized cultures which was for the first time used for immobilization of microorganisms. Effects of various conditions of nitrogen and carbon nutrition on the biosynthesis of pectolytic enzymes in Aspergillus awamori 1-8 strain were studied. Proposed cultivation technology along with optimization of media components for pectinase overproduction led to increased pectinase productivity in Aspergillus awamori 1-8 from 7 to 8 times. Proposed technology can be applied successfully for production of major industrial enzymes such as α-amylase, protease, collagenase etc.

Parameter Estimation for Viewing Rank Distribution of Video-on-Demand

Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.

Multidimensional Visualization Tools for Analysis of Expression Data

Expression data analysis is based mostly on the statistical approaches that are indispensable for the study of biological systems. Large amounts of multidimensional data resulting from the high-throughput technologies are not completely served by biostatistical techniques and are usually complemented with visual, knowledge discovery and other computational tools. In many cases, in biological systems we only speculate on the processes that are causing the changes, and it is the visual explorative analysis of data during which a hypothesis is formed. We would like to show the usability of multidimensional visualization tools and promote their use in life sciences. We survey and show some of the multidimensional visualization tools in the process of data exploration, such as parallel coordinates and radviz and we extend them by combining them with the self-organizing map algorithm. We use a time course data set of transitional cell carcinoma of the bladder in our examples. Analysis of data with these tools has the potential to uncover additional relationships and non-trivial structures.

Intensity of Singular Stress Field at the Corner of Adhesive Layer in Bonded Plate

In this paper the strength of adhesive joint under tension and bending is discussed on the basis of intensity of singular stress by the application of FEM. A useful method is presented with focusing on the stress at the edge of interface between the adhesive and adherent obtained by FEM. After analyzing the adhesive joint strength with all material combinations, it is found that to improve the interface strength, thin adhesive layers are desirable because the intensity of singular stress decreases with decreasing the thickness.

A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves

In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.

Interoperability in Component Based Software Development

The ability of information systems to operate in conjunction with each other encompassing communication protocols, hardware, software, application, and data compatibility layers. There has been considerable work in industry on the development of component interoperability models, such as CORBA, (D)COM and JavaBeans. These models are intended to reduce the complexity of software development and to facilitate reuse of off-the-shelf components. The focus of these models is syntactic interface specification, component packaging, inter-component communications, and bindings to a runtime environment. What these models lack is a consideration of architectural concerns – specifying systems of communicating components, explicitly representing loci of component interaction, and exploiting architectural styles that provide well-understood global design solutions. The development of complex business applications is now focused on an assembly of components available on a local area network or on the net. These components must be localized and identified in terms of available services and communication protocol before any request. The first part of the article introduces the base concepts of components and middleware while the following sections describe the different up-todate models of communication and interaction and the last section shows how different models can communicate among themselves.

Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels

The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.

Masonry CSEB Building Models under Shaketable Testing-An Experimental Study

In this experimental investigation shake table tests were conducted on two reduced models that represent normal single room building constructed by Compressed Stabilized Earth Block (CSEB) from locally available soil. One model was constructed with earthquake resisting features (EQRF) having sill band, lintel band and vertical bands to control the building vibration and another one was without Earthquake Resisting Features. To examine the seismic capacity of the models particularly when it is subjected to long-period ground motion by large amplitude by many cycles of repeated loading, the test specimen was shaken repeatedly until the failure. The test results from Hi-end Data Acquisition system show that model with EQRF behave better than without EQRF. This modified masonry model with new material combined with new bands is used to improve the behavior of masonry building.

Mathematical Programming on Multivariate Calibration Estimation in Stratified Sampling

Calibration estimation is a method of adjusting the original design weights to improve the survey estimates by using auxiliary information such as the known population total (or mean) of the auxiliary variables. A calibration estimator uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, we propose a new multivariate calibration estimator for the population mean in the stratified sampling design, which incorporates information available for more than one auxiliary variable. The problem of determining the optimum calibrated weights is formulated as a Mathematical Programming Problem (MPP) that is solved using the Lagrange multiplier technique.

Tsunami Modelling using the Well-Balanced Scheme

A well balanced numerical scheme based on stationary waves for shallow water flows with arbitrary topography has been introduced by Thanh et al. [18]. The scheme was constructed so that it maintains equilibrium states and tests indicate that it is stable and fast. Applying the well-balanced scheme for the one-dimensional shallow water equations, we study the early shock waves propagation towards the Phuket coast in Southern Thailand during a hypothetical tsunami. The initial tsunami wave is generated in the deep ocean with the strength that of Indonesian tsunami of 2004.

RB-Matcher: String Matching Technique

All Text processing systems allow their users to search a pattern of string from a given text. String matching is fundamental to database and text processing applications. Every text editor must contain a mechanism to search the current document for arbitrary strings. Spelling checkers scan an input text for words in the dictionary and reject any strings that do not match. We store our information in data bases so that later on we can retrieve the same and this retrieval can be done by using various string matching algorithms. This paper is describing a new string matching algorithm for various applications. A new algorithm has been designed with the help of Rabin Karp Matcher, to improve string matching process.

Action Recognition in Video Sequences using a Mealy Machine

In this paper the use of sequential machines for recognizing actions taken by the objects detected by a general tracking algorithm is proposed. The system may deal with the uncertainty inherent in medium-level vision data. For this purpose, fuzzification of input data is performed. Besides, this transformation allows to manage data independently of the tracking application selected and enables adding characteristics of the analyzed scenario. The representation of actions by means of an automaton and the generation of the input symbols for finite automaton depending on the object and action compared are described. The output of the comparison process between an object and an action is a numerical value that represents the membership of the object to the action. This value is computed depending on how similar the object and the action are. The work concludes with the application of the proposed technique to identify the behavior of vehicles in road traffic scenes.

Using Reuse Water for Irrigation Green space of Naein City

Since water resources of desert Naein City are very limited, a approach which saves water resources and meanwhile meets the needs of the greenspace for water is to use city-s sewage wastewater. Proper treatment of Naein-s sewage up to the standards required for green space uses may solve some of the problems of green space development of the city. The present paper closely examines available statistics and information associated with city-s sewage system, and determines complementary stages of sewage treatment facilities of the city. In the present paper, population, per capita water use, and required discharge for various greenspace pieces including different plants are calculated. Moreover, in order to facilitate the application of water resources, a Crude water distribution network apart from drinking water distribution network is designed, and a plan for mixing municipal wells- water with sewage wastewater in proposed mixing tanks is suggested. Hence, following greenspace irrigation reform and complementary plan, per capita greenspace of the city will be increased from current amount of 13.2 square meters to 32 square meters.