The Investigation of Enzymatic Activity in the Soils under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia

Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoesterase and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.

Dielectric Properties of MWCNT-Muscovite/Epoxy Hybrid Composites

In the present work, the dielectric properties of Epoxy/MWCNT-muscovite HYBRID and MIXED composites based on a ratio 30:70 were studied. The multi-wall carbon nanotubes (MWCNT) were prepared using two methods: (a) MWCNTmuscovite hybrids were synthesised by chemical vapour deposition (CVD) and (b) physically mixing muscovite with MWCNT. The effects of different preparation of the composites and filler loading were evaluated. It was revealed that the dielectric constants of HYBRID epoxy composites are slightly higher than MIXED epoxy composites. It was also indicated that the dielectric constant increased by increasing the MWCNT filler loading.

Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method

The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ- Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME.

Estimating the Population Mean by Using Stratified Double Extreme Ranked Set Sample

Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric.

Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture

Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Neuroplasticity: A Fresh Beginning for Life

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. This paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Tourism Policy Challenges in Post-Soviet Georgia

Within the framework of this research, the regulatory documents, which are in force in relation to this industry, were analyzed. The main attention is turned to their modernization and necessity of their compliance with European standards. It is a current issue to direct the efforts of state policy on support of business by implementing infrastructural projects, as well as by development of human resources, which may be possible by supporting the relevant higher and vocational studying-educational programs.

IT/IS Organisation Design in the Digital Age – A Literature Review

Information technology and information systems are currently at a tipping point. The digital age fundamentally transforms a large number of industries in the ways they work. Lines between business and technology blur. Researchers have acknowledged that this is the time in which the IT/IS organisation needs to re-strategize itself. In this paper, the author provides a structured review of the IS and organisation design literature addressing the question of how the digital age changes the design categories of an IT/IS organisation design. The findings show that most papers just analyse single aspects of either IT/IS relevant information or generic organisation design elements but miss a holistic ‘big-picture’ onto an IT/IS organisation design. This paper creates a holistic IT/IS organisation design framework bringing together the IS research strand, the digital strand and the generic organisation design strand. The research identified four IT/IS organisation design categories (strategy, structure, processes and people) and discusses the importance of two additional categories (sourcing and governance). The authors findings point to a first anchor point from which further research needs to be conducted to develop a holistic IT/IS organisation design framework.

LIFirr with an Indicator of Microbial Activity in Paraffinic Oil

Paraffinic oils were submitted to microbial action. The microorganisms consisted of bacteria of the genera Pseudomonas sp. and Bacillus lincheniforms. The alterations in interfacial tension were determined using a tensometer and applying the hanging drop technique at room temperature (299 K ±275 K). The alteration in the constitution of the paraffins was evaluated by means of gas chromatography. The microbial activity was observed to reduce interfacial tension by 54 to 78%, as well as consuming the paraffins C19 to C29 and producing paraffins C36 to C44. The LIFirr technique made it possible to determine the microbial action quickly.

STATISTICA Software: A State of the Art Review

Data mining idea is mounting rapidly in admiration and also in their popularity. The foremost aspire of data mining method is to extract data from a huge data set into several forms that could be comprehended for additional use. The data mining is a technology that contains with rich potential resources which could be supportive for industries and businesses that pay attention to collect the necessary information of the data to discover their customer’s performances. For extracting data there are several methods are available such as Classification, Clustering, Association, Discovering, and Visualization… etc., which has its individual and diverse algorithms towards the effort to fit an appropriate model to the data. STATISTICA mostly deals with excessive groups of data that imposes vast rigorous computational constraints. These results trials challenge cause the emergence of powerful STATISTICA Data Mining technologies. In this survey an overview of the STATISTICA software is illustrated along with their significant features.

Some Aspects of Social Media Marketing (Georgian Case)

This paper is focusing on the attitude of Georgian consumers toward social media, influence of social media on consumer buying behavior. The purpose of this paper is to explore the usage of social media marketing for small business companies of Georgia. The result of marketing research has revealed that social webs are mostly used by Georgian consumers, but they have little impact on the buying decision. The research method was exploratory and descriptive. Conclusions summarize the research results and offers insight to provide better understandings of consumers demand and implementation of marketing strategy through social media in Georgia.

The Cost of Innovation in Software Development Projects

The paper tackles the topic of determining the cost of innovation in software development projects. Innovation can be achieved either in a planned or unplanned manner. The paper approaches the scenarios were innovation is planned for. As a starting point an innovative software development project is analyzed. The project is depicted step by step as it was implemented, from inception to delivery. Costs that are proprietary to innovation in software development are isolated based on the author’s personal experience in managing the above mentioned project. Innovation costs components identified by the author are then validated using open discussions with software development professionals and projects managers on LinkedIn groups. In order to receive relevant feedback only groups that focus on software development and innovation management are targeted. Additional innovation cost components suggested by software development professionals and projects managers are also considered. Based on the identified cost components an indicator is built. The indicator is meant to formalize the process of determining the cost of innovation in a software development project. The indicator aggregates all the innovation cost components that are identified in the research process. The process of calculating each cost component is also described. Conclusions are formulated and new related research topics are submitted for debate.

Material Parameter Identification of Modified AbdelKarim-Ohno Model

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry

This paper reports the numerical simulation of doublediffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.

Characteristics of Successful Sales Interaction in B2B Sales Meetings

The value co-creation has gained much attention in sales research, but less is known about how salespeople and customers interact in the authentic business to business (B2B) sales meetings. The study presented in this paper empirically contributes to existing research by presenting authentic B2B sales meetings that were video recorded and analyzed using observation and qualitative content analysis methods. This paper aims to study key elements of successful sales interactions between salespeople and customers/ buyers. This study points out that salespeople are selling value rather than the products or services themselves, which are only enablers in realizing business benefits. Therefore, our findings suggest that promoting and easing open discourse is an essential part of a successful sales encounter. A better understanding of how salespeople and customers successfully interact would help salespeople to develop their interpersonal sales skills.

Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

In Jordan having deficit atmospheric precipitation, an increase in water demand occurs during summer months. Jordan can be regarded with a relatively high potential for wastewater recycling and reuse. The main purpose of this paper was to investigate the removal of total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill wastewater (OMW) by electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes, the optimum working pH was found to be around 6. Results indicated that the electrocoagulation process allowed removal of TSS and COD of about 82.5% and 47.5%, respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. It was demonstrated that the maximum TSS and COD removals were obtained at some optimum experimental parameters for current density, pH, and reaction time.

Anti-Corruption Conventions in Nigeria: Legal and Administrative Challenges

There is a trend in development discourse to understand and explain the level of corruption in Nigeria, its anticorruption crusade and why it is failing, as well as its level of compliance with International standards of United Nations Convention against Corruption (UNCAC) & African Union Convention on Converting and Preventing Corruption) to which Nigeria is a signatory. This paper discusses the legal and Constitutional provisions relating to corrupt practices and safeguards in Nigeria, as well as the obstacles to the implementation of these Conventions. The paper highlights the challenges posed to the Anti-Corruption crusade by analysing the loopholes that exist both in administrative structure and in scope of the relevant laws. The paper argues that Nigerian Constitution did not make adequate provisions for the implementation of the conventions, hence a proposal which will ensure adequate provision for implementing the conventions to better the lives of Nigerians. The paper concludes that there is the need to build institutional parameters, adequate constitutional and structural safeguards, as well as to synergise strategies, collaborations and alliances to facilitate the timely domestication and implementation of the conventions.

Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot

In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.