Response Quality Evaluation in Heterogeneous Question Answering System: A Black-box Approach

The evaluation of the question answering system is a major research area that needs much attention. Before the rise of domain-oriented question answering systems based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when question answering systems began to be more domains specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time achieve higher quality responses The research in this paper discusses the inappropriateness of the existing measure for response quality evaluation and in a later part, the call for new standard measures and the related considerations are brought forward. As a short-term solution for evaluating response quality of heterogeneous systems, and to demonstrate the challenges in evaluating systems of different nature, this research presents a black-box approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems (i.e. AnswerBus, START and NaLURI).

Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Properties of the Research Teaching Organization of Military Masters

In the article there have been revealed the properties of designing the research teaching the military masters and in the context it has been offered the program of mastering by the masters military men the methodology of research work, in the course of practical teaching activity there has been considered the developed and approbated model of organization of the process of mastering by the masters the methodology of research work. As a whole, the research direction of master preparation leaves its sign to the content of education, forms of organization of educational process, scientific work of masters. In this connection the offered in the article properties of organization of research teaching and a model of organization of mastering by the masters military men the methodology of research work can be taken into account when designing the content of master preparation.

Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis

The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.

Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities

Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.

Stability Analysis of Impulsive BAM Fuzzy Cellular Neural Networks with Distributed Delays and Reaction-diffusion Terms

In this paper, a class of impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms is formulated and investigated. By employing the delay differential inequality and inequality technique developed by Xu et al., some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays and reaction-diffusion terms are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I

Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.

Forward Kinematics Analysis of a 3-PRS Parallel Manipulator

In this article the homotopy continuation method (HCM) to solve the forward kinematic problem of the 3-PRS parallel manipulator is used. Since there are many difficulties in solving the system of nonlinear equations in kinematics of manipulators, the numerical solutions like Newton-Raphson are inevitably used. When dealing with any numerical solution, there are two troublesome problems. One is that good initial guesses are not easy to detect and another is related to whether the used method will converge to useful solutions. Results of this paper reveal that the homotopy continuation method can alleviate the drawbacks of traditional numerical techniques.

Architecture of Speech-based Registration System

In this era of technology, fueled by the pervasive usage of the internet, security is a prime concern. The number of new attacks by the so-called “bots", which are automated programs, is increasing at an alarming rate. They are most likely to attack online registration systems. Technology, called “CAPTCHA" (Completely Automated Public Turing test to tell Computers and Humans Apart) do exist, which can differentiate between automated programs and humans and prevent replay attacks. Traditionally CAPTCHA-s have been implemented with the challenge involved in recognizing textual images and reproducing the same. We propose an approach where the visual challenge has to be read out from which randomly selected keywords are used to verify the correctness of spoken text and in turn detect the presence of human. This is supplemented with a speaker recognition system which can identify the speaker also. Thus, this framework fulfills both the objectives – it can determine whether the user is a human or not and if it is a human, it can verify its identity.

Influence of Port Geometry on Thrust Transient of Solid Propellant Rockets at Liftoff

Numerical studies have been carried out using a two dimensional code to examine the influence of pressure / thrust transient of solid propellant rockets at liftoff. This code solves unsteady Reynolds-averaged thin-layer Navier–Stokes equations by an implicit LU-factorization time-integration method. The results from the parametric study indicate that when the port is narrow there is a possibility of increase in pressure / thrust-rise rate due to relatively high flame spread rate. Parametric studies further reveal that flame spread rate can be altered by altering the propellant properties, igniter jet characteristics and nozzle closure burst pressure without altering the grain configuration and/or the mission demanding thrust transient. We observed that when the igniter turbulent intensity is relatively low the vehicle could liftoff early due to the early flow choking of the rocket nozzle. We concluded that the high pressurization-rate has structural implications at liftoff in addition to transient burning effect. Therefore prudent selection of the port geometry and the igniter, for meeting the mission requirements, within the given envelop are meaningful objectives for any designer for the smooth liftoff of solid propellant rockets.

Attack Detection through Image Adaptive Self Embedding Watermarking

Now a days, a significant part of commercial and governmental organisations like museums, cultural organizations, libraries, commercial enterprises, etc. invest intensively in new technologies for image digitization, digital libraries, image archiving and retrieval. Hence image authorization, authentication and security has become prime need. In this paper, we present a semi-fragile watermarking scheme for color images. The method converts the host image into YIQ color space followed by application of orthogonal dual domains of DCT and DWT transforms. The DCT helps to separate relevant from irrelevant image content to generate silent image features. DWT has excellent spatial localisation to help aid in spatial tamper characterisation. Thus image adaptive watermark is generated based of image features which allows the sharp detection of microscopic changes to locate modifications in the image. Further, the scheme utilises the multipurpose watermark consisting of soft authenticator watermark and chrominance watermark. Which has been proved fragile to some predefined processing like intentinal fabrication of the image or forgery and robust to other incidental attacks caused in the communication channel.

Physical Education in the Brazilian Educational Law and National Curriculum Guidelines

The aim of this study was to establish the relationship between the principles of Educational Sport and the objectives of Physical Education in two brasilian laws: National Curriculum Guidelines (PCNs) for the Elementary and Middle School Levels and the Guidelines and Basis Legislation (LDB). The method used was the survey analysis in order to determine the practices present in, or the opinions of, a specific population. The instrument used in this research was a questionnaire. After a broad review of the bibliography and according to the methodological procedures, the aim was to set the relationships between the Principles of Educational Sport and the objectives of Physical Education, according to the Brazilian Law (LDB) and National Curriculum Guidelines (PCNs) in a table made under the analysis of a group of specialists. As the relation between the principles of Educational Sport and the objectives of School Physical Education have shown, we can state that School Physical Education has gained pedagogical security for the potential use of Educational Sport as part of its contents.

Production of Spherical Ag/ZnO Nanocomposite Particles for Photocatalytic Applications

Noble metal participation in nanostructured semiconductor catalysts has drawn much interest because of their improved properties. Recently, it has been discussed by many researchers that Ag participation in TiO2, CuO, ZnO semiconductors showed improved photocatalytic and optical properties. In this research, Ag/ZnO nanocomposite particles were prepared by Ultrasonic Spray Pyrolysis(USP) Method. 0.1M silver and zinc nitrate aqueous solutions were used as precursor solutions. The Ag:Zn atomic ratio of the solution was selected 1:1. Experiments were taken place under constant air flow of 400 mL/min at 800°C furnace temperature. Particles were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS). The crystallite sizes of Ag and ZnO in composite particles are 24.6 nm, 19.7 nm respectively. Although, spherical nanocomposite particles are in a range of 300- 800 nm, these particles are formed by the aggregation of primary particles which are in a range of 20-60 nm.

System Identification with General Dynamic Neural Networks and Network Pruning

This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.

Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management System

This paper presents an application of Artificial Neural Network (ANN) to forecast actual cost of a project based on the earned value management system (EVMS). For this purpose, some projects randomly selected based on the standard data set , and it is produced necessary progress data such as actual cost ,actual percent complete , baseline cost and percent complete for five periods of project. Then an ANN with five inputs and five outputs and one hidden layer is trained to produce forecasted actual costs. The comparison between real and forecasted data show better performance based on the Mean Absolute Percentage Error (MAPE) criterion. This approach could be applicable to better forecasting the project cost and result in decreasing the risk of project cost overrun, and therefore it is beneficial for planning preventive actions.

Exploring the Professional Competency Contents for International Marketer in Taiwan

The main purpose of this study was to establish Professional Competency Contents for International Marketer in Taiwan. To establish these contents a set of interviews with international marketing managers and three rounds of Delphi Technique surveys were employed. Five international marketing managers were interviewed for discussions on definitions, framework, and items of international marketing competency. A questionnaire for the " Delphi Technique Survey " was developed based on the results acquired from the interviews. The resulting questionnaire was distributed to another group of 30 international marketer of trading companies in Taiwan. After three rounds of Delphi Technique Survey with these participants, the "Contents of Professional Competency for International Marketer " was established. Five dimensions and thirty indicators were identified. It is hoped that the proposed contents could be served as a self-evaluation tool for international marketer as well as the basis for staffing and training programs for international marketer in Taiwan.

Making Businesses Work Smarter with Mobile Business Intelligence

Through the course of this paper we outline how mobile Business Intelligence (m-BI) can help businesses to work smarter and to improve their agility. When we analyze the industry from the usage perspective or how interaction with the enterprise BI system happens via mobile devices, we may easily understand that there are two major types of mobile BI: passive and active. Active mobile BI gives provisions for users to interact with the BI systems on-the-fly. Active mobile business intelligence often works as a combination of both “push and pull" techniques. Some mistakes were done in the up-to-day progress of mobile technologies and mobile BI, as well as some problems that still have to be resolved. We discussed in the paper rather broadly.

Comparison of Evolutionary Algorithms and their Hybrids Applied to MarioAI

Researchers have been applying artificial/ computational intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In thispaper, we report our experimental result on the comparison of evolution strategy, genetic algorithm and their hybrids, applied to evolving controller agents for MarioAI. GA revealed its advantage in our experiment, whereas the expected ability of ES in exploiting (fine-tuning) solutions was not clearly observed. The blend crossover operator and the mutation operator of GA might contribute well to explore the vast search space.

A Markov Chain Approximation for ATS Modeling for the Variable Sampling Interval CCC Control Charts

The cumulative conformance count (CCC) charts are widespread in process monitoring of high-yield manufacturing. Recently, it is found the use of variable sampling interval (VSI) scheme could further enhance the efficiency of the standard CCC charts. The average time to signal (ATS) a shift in defect rate has become traditional measure of efficiency of a chart with the VSI scheme. Determining the ATS is frequently a difficult and tedious task. A simple method based on a finite Markov Chain approach for modeling the ATS is developed. In addition, numerical results are given.

Applications of High-Order Compact Finite Difference Scheme to Nonlinear Goursat Problems

Several numerical schemes utilizing central difference approximations have been developed to solve the Goursat problem. However, in a recent years compact discretization methods which leads to high-order finite difference schemes have been used since it is capable of achieving better accuracy as well as preserving certain features of the equation e.g. linearity. The basic idea of the new scheme is to find the compact approximations to the derivative terms by differentiating centrally the governing equations. Our primary interest is to study the performance of the new scheme when applied to two Goursat partial differential equations against the traditional finite difference scheme.