Research on Regional Energy Saving Potential Based on Nonparametric Radial Adjustment and Slack Adjustment

Taking the provincial capital, labor and energy as inputs, regional GDP as output from 1995 to 2007, the paper quantifies the vertical and lateral energy saving potential by introducing the radial adjustment and slack adjustment of DEA. The results show that by the vertical, the achievement of energy saving in 2007 is better than their respective historical performances. By horizontal, in 2007 it can be found that Tianjin, Liaoning, Shanghai and Yunnan do better in energy saving than other provinces. In national wide, the higher of energy efficiency, the larger of per capita GDP and the proportion of the tertiary industry in the national economy, the more open to the outside, the lower the energy saving potential demonstrates, while the energy endowment has negative effect on energy saving potential.

A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System

A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.

Developing Road Performance Measurement System with Evaluation Instrument

Transportation authorities need to provide the services and facilities that are critical to every country-s well-being and development. Management of the road network is becoming increasingly challenging as demands increase and resources are limited. Public sector institutions are integrating performance information into budgeting, managing and reporting via implementing performance measurement systems. In the face of growing challenges, performance measurement of road networks is attracting growing interest in many countries. The large scale of public investments makes the maintenance and development of road networks an area where such systems are an important assessment tool. Transportation agencies have been using performance measurement and modeling as part of pavement and bridge management systems. Recently the focus has been on extending the process to applications in road construction and maintenance systems, operations and safety programs, and administrative structures and procedures. To eliminate failure and dysfunctional consequences the importance of obtaining objective data and implementing evaluation instrument where necessary is presented in this paper

Use of Zeolite and Surfactant Modified Zeolite as Ion Exchangers to Control Nitrate Leaching

Nitrogen loss from irrigated cropland, particularly sandy soils, significantly contributes to nitrate (NO3 -) levels in surface and groundwaters. Thus, it is of great interest to use inexpensive natural products that can increase the fertilizer efficiency and decrease nitrate leaching. In this study, the ability of natural Iranian zeolite clinoptilolite (Cp) and surfactant modified zeolite clinoptilolite (SMZ) to remove NH4 + and NO3 -, respectively, from aqueous solutions was determined. The feasibility of using Cp and SMZ as soil amendment to reduce nitrate leaching from soil using lysimeters was also investigated. Zeolite showed 10.23% to 88.42% NH4 + removal efficiency over a wide range of initial NH4 + concentrations. Nitrate removal efficiency by SMZ was 32.26% to 82.26%. Field study results showed that Cp and SMZ significantly (p < 0.05) reduced leachate NO3-N concentration compared to control. There was no significant difference between maximum and mean leachate NO3-N concentration of SMZ lysimeters and those of Cp lysimeters.

A Novel Approach for Tracking of a Mobile Node Based on Particle Filter and Trilateration

This paper evaluates the performance of a novel algorithm for tracking of a mobile node, interms of execution time and root mean square error (RMSE). Particle Filter algorithm is used to track the mobile node, however a new technique in particle filter algorithm is also proposed to reduce the execution time. The stationary points were calculated through trilateration and finally by averaging the number of points collected for a specific time, whereas tracking is done through trilateration as well as particle filter algorithm. Wi-Fi signal is used to get initial guess of the position of mobile node in x-y coordinates system. Commercially available software “Wireless Mon" was used to read the WiFi signal strength from the WiFi card. Visual Cµ version 6 was used to interact with this software to read only the required data from the log-file generated by “Wireless Mon" software. Results are evaluated through mathematical modeling and MATLAB simulation.

Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Carriers scattering in the inversion channel of n- MOSFET dominates the drain current. This paper presents an effective electron mobility model for the pocket implanted nano scale n-MOSFET. The model is developed by using two linear pocket profiles at the source and drain edges. The channel is divided into three regions at source, drain and central part of the channel region. The total number of inversion layer charges is found for these three regions by numerical integration from source to drain ends and the number of depletion layer charges is found by using the effective doping concentration including pocket doping effects. These two charges are then used to find the effective normal electric field, which is used to find the effective mobility model incorporating the three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as the ballistic phenomena for the pocket implanted nano-scale n-MOSFET. The simulation results show that the derived mobility model produces the same results as found in the literatures.

Measures and Influence of a Baw Filter on Digital Radio-Communications Signals

This work concerns the measurements of a Bulk Acoustic Waves (BAW) emission filter S parameters and compare with prototypes simulated types. Thanks to HP-ADS, a co-simulation of filters- characteristics in a digital radio-communication chain is performed. Four cases of modulation schemes are studied in order to illustrate the impact of the spectral occupation of the modulated signal. Results of simulations and co-simulation are given in terms of Error Vector Measurements to be useful for a general sensibility analysis of 4th/3rd Generation (G.) emitters (wideband QAM and OFDM signals)

Investigation of Silane Modified Ceramic Surface of Porous Mullite Ceramics

The present research focus on the processing of mullite-based ceramics from oil refinery industrial wastes and byproducts of agricultural industry and on the investigating of silane modified surface of ceramics. Two waste products were used as initial material – waste aluminum oxide and waste rice husk. The burning - out additives used were waste rise husk. It is known that  the oxide ceramics surface is hydrophilic due to the presence of – OH groups in it. The nature of ceramic surface regarding permeation of water and hydrocarbons can be changed by further treatment with silanes. The samples were studied mainly by X-ray analysis, FT-IR absorbance measurements and microscopic analysis. The X-ray analyses showed the phase composition depends on the firing temperature and on the purity of the starting alumina. Two kind of silanes were used for the transformation of surface from hydrophilic to hydrophobic – trimethoxymethylsilane (TMMS) and trimethylclorsilane (TMCS).

Vapor Bubble Dynamics in Upward Subcooled Flow Boiling During Void Evolution

Bubble generation was observed using a high-speed camera in subcooled flow boiling at low void fraction. Constant heat flux was applied on one side of an upward rectangular channel to make heated test channel. Water as a working fluid from high subcooling to near saturation temperature was injected step by step to investigate bubble behavior during void development. Experiments were performed in two different pressures condition close to 2bar and 4bar. It was observed that in high subcooling when boiling was commenced, bubble after nucleation departed its origin and slid beside heated surface. In an observation window mean release frequency of bubble fb,mean, nucleation site Ns and mean bubble volume Vb,mean in each step of experiments were measured to investigate wall vaporization rate. It was found that in proximity of PNVG vaporization rate was increased significantly in compare with condensation rate which remained in low value.

A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix

In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.

Project Selection Using Fuzzy Group Analytic Network Process

This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.

Wireless Control for an Induction Motor

This paper discusses the development of wireless structure control of an induction motor scalar drives. This was realised up on the wireless WiFi networks. This strategy of control is ensured by the use of Wireless ad hoc networks and a virtual network interface based on VNC which is used to make possible to take the remote control of a PC connected on a wireless Ethernet network. Verification of the proposed strategy of control is provided by experimental realistic tests on scalar controlled induction motor drives. The experimental results of the implementations with their analysis are detailed.

The use of ICT for Learning Guidance for Junior High School in Indonesia

In this paper, we will be present Guidance and Councelling (GC) class action research. The research was done because a fact that some students are still learning ways such as in elementary school. The research objective is to enhance the value of “academic performance report" grade by using ICT as GC Learning Guidance services. The research method was carried out with two cycles. First cycle is applying Learning Guidance services indirectly and not programmed. Second cycle into two implementing Learning Guidance services indirectly, programmed and using ICTs primarily mobile phones and computer media applications i.e. “m-NingBK©: Learning Guidance" and “screen saver: Learning Guidance". A research subject is a class VII student who has the lowest value of “academic performance report". The result is by using an indirect GC services with ICT there were significant changes.

Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities

The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The delivery performance is evaluated based on the system reliability of delivering commodities from a source node to a sink node in the network. The system reliability is thus maximized to find the optimal routing. However, the design problem is not simple because (1) each path segment has randomly distributed attributes; (2) there are multiple commodities that consume various path capacities; (3) the optimal routing must successfully complete the delivery process within the allowable time constraints. In this paper, we want to focus on the design optimization of the Multi-State Flow Network (MSFN) for multiple commodities. We propose an efficient approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and find the optimal routing subject to the allowable time constraints. The delivery rates, also known as delivery currents, of the path segments are evaluated and the minimal-current arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. It has been shown that the reliability of the optimal routing is at least higher than worst-case measure. Two benchmark examples are utilized to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.

Seismic Behaviour of Steel Frames Investigation with Knee Brace Based on Pushover Analysis

The knee bracing steel frame (KBF) is a new kind of energy dissipating frame, which combines excellent ductility and lateral stiffness. In this framing system, a special form of diagonal brace connected to a knee element instead of beam-column joint, is investigated. Recently, a similar system was proposed and named as chevron knee bracing system (CKB) which in comparison with the former system has a better energy absorption characteristic and at the same time retains the elastic nature of the structures. Knee bracing can provide a stiffer bracing system but reduces the ductility of the steel frame. Chevron knee bracing can be employed to provide the desired ductility level for a design. In this article, relation between seismic performance and structural parameters of the two above mentioned systems are investigated and compared. Frames with similar dimensions but various heights in both systems are designed according to Iranian code of practice for seismic resistant design of building, and then based on a non-linear push over static analysis; the seismic parameters such as behavior factor and performance levels are compared.

Development of a Novel Low-Cost Flight Simulator for Pilot Training

A novel low-cost flight simulator with the development goals cost effectiveness and high performance has been realized for meeting the huge pilot training needs of airlines. The simulator consists of an aircraft dynamics model, a sophisticated designed low-profile electrical driven motion system with a subsided cabin, a mixed reality based semi-virtual cockpit system, a control loading system and some other subsystems. It shows its advantages over traditional flight simulator by its features achieved with open architecture, software solutions and low-cost hardware.

SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space

Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.

Evaluation of Classifiers Based On I2C Distance for Action Recognition

Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.

A Finite Precision Block Floating Point Treatment to Direct Form, Cascaded and Parallel FIR Digital Filters

This paper proposes an efficient finite precision block floating point (BFP) treatment to the fixed coefficient finite impulse response (FIR) digital filter. The treatment includes effective implementation of all the three forms of the conventional FIR filters, namely, direct form, cascaded and par- allel, and a roundoff error analysis of them in the BFP format. An effective block formatting algorithm together with an adaptive scaling factor is pro- posed to make the realizations more simple from hardware view point. To this end, a generic relation between the tap weight vector length and the input block length is deduced. The implementation scheme also emphasises on a simple block exponent update technique to prevent overflow even during the block to block transition phase. The roundoff noise is also investigated along the analogous lines, taking into consideration these implementational issues. The simulation results show that the BFP roundoff errors depend on the sig- nal level almost in the same way as floating point roundoff noise, resulting in approximately constant signal to noise ratio over a relatively large dynamic range.

Dependence of Equilibrium, Kinetics and Thermodynamics of Zn (II) Ions Sorption from Water on Particle Size of Natural Hydroxyapatite Extracted from Bone Ash

Heavy metals have bad effects on environment and soils and it can uptake by natural HAP .natural Hap is an inexpensive material that uptake large amounts of various heavy metals like Zn (II) .Natural HAP (N-HAP), extracted from bovine cortical bone ash, is a good choice for substitution of commercial HAP. Several experiments were done to investigate the sorption capacity of Zn (II) to N-HAP in various particles sizes, temperatures, initial concentrations, pH and reaction times. In this study, the sorption of Zinc ions from a Zn solution onto HAP particles with sizes of 1537.6 nm and 47.6 nm at three initial pH values of 4.50, 6.00 and 7.50 was studied. The results showed that better performance was obtained through a 47.6 nm particle size and higher pH values. The experimental data were analyzed using Langmuir, Freundlich, and Arrhenius equations for equilibrium, kinetic and thermodynamic studies. The analysis showed a maximum adsorption capacity of NHAP as being 1.562 mmol/g at a pH of 7.5 and small particle size. Kinetically, the prepared N-HAP is a feasible sorbent that retains Zn (II) ions through a favorable and spontaneous sorption process.