Impact of Machining Parameters on the Surface Roughness of Machined PU Block

Machining parameters are very important in determining the surface quality of any material. In the past decade, some new engineering materials were developed for the manufacturing industry which created a need to conduct an investigation on the impact of the said parameters on their surface roughness. Polyurethane (PU) block is widely used in the automotive industry to manufacture parts such as checking fixtures that are used to verify the dimensional accuracy of automotive parts. In this paper, the design of experiment (DOE) was used to investigate on the effect of the milling parameters on the PU block. Furthermore, an analysis of the machined surface chemical composition was done using scanning electron microscope (SEM). It was found that the surface roughness of the PU block is severely affected when PU undergoes a flood machining process instead of a dry condition. In addition the stepover and the silicon content were found to be the most significant parameters that influence the surface quality of the PU block.

Decision Making about the Environmental Management Implementation – Incentives and Expectations

Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.

Evaluation of Medication Administration Process in a Paediatric Ward

Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding to the medication administration process should be improved.

Implementing a Database from a Requirement Specification

Creating a database scheme is essentially a manual process. From a requirement specification the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a relational database from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that a first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore this method is a step forward in finding a solution that requires little or no user intervention.

Zamzam Water as Corrosion Inhibitor for Steel Rebar in Rainwater and Simulated Acid Rain

Corrosion inhibitors are widely used in concrete industry to reduce the corrosion rate of steel rebar which is present in contact with aggressive environments. The present work aims to using Zamzam water from well located within the Masjid al-Haram in Mecca, Saudi Arabia 20 m (66 ft) east of the Kaaba, the holiest place in Islam as corrosion inhibitor for steel in rain water and simulated acid rain. The effect of Zamzam water was investigated by electrochemical impedance spectroscopy (EIS) and Potentiodynamic polarization techniques in Department of Civil Engineering - IUT Saint-Nazaire, Nantes University, France. Zamzam water is considered to be one of the most important steel corrosion inhibitor which is frequently used in different industrial applications. Results showed that zamzam water gave a very good inhibition for steel corrosion in rain water and simulated acid rain.

Adaptive Noise Reduction Algorithm for Speech Enhancement

In this paper, Least Mean Square (LMS) adaptive noise reduction algorithm is proposed to enhance the speech signal from the noisy speech. In this, the speech signal is enhanced by varying the step size as the function of the input signal. Objective and subjective measures are made under various noises for the proposed and existing algorithms. From the experimental results, it is seen that the proposed LMS adaptive noise reduction algorithm reduces Mean square Error (MSE) and Log Spectral Distance (LSD) as compared to that of the earlier methods under various noise conditions with different input SNR levels. In addition, the proposed algorithm increases the Peak Signal to Noise Ratio (PSNR) and Segmental SNR improvement (ΔSNRseg) values; improves the Mean Opinion Score (MOS) as compared to that of the various existing LMS adaptive noise reduction algorithms. From these experimental results, it is observed that the proposed LMS adaptive noise reduction algorithm reduces the speech distortion and residual noise as compared to that of the existing methods.

Network Effects and QoS as Determining Factors in Selection of Mobile Operator: A Case Study from Higher Learning Institution in Dodoma Municipality in Tanzania

The use of mobile phones is growing tremendously all over the world. In Tanzania there are a number of operators licensed by Tanzania Communications Regulatory Authority (TCRA) aiming at attracting customers into their networks. So far telecommunications market competition has been very stiff. Various measures are being taken by mobile operators to survive in the market. Such measure include introducing of different air time bundles on daily, weekly and monthly at lower tariffs. Other measures include the introduction of normal tariff, tourist package and one network. Despite of all these strategies, there is a dynamic competition in the market which needs to be explored. Some influences which attract customers to choose a certain mobile operator are of particular interest. This paper is investigating if the network effects and Quality of Services (QoS) influence mobile customers in selection of their mobile network operators. Seventy seven students from high learning institutions in Dodoma Municipality in Tanzania participated in responding to prepared questionnaires. The data was analyzed using Statistical Package for Social Science (SPSS) Software. The results indicate that, network coverage does influence customers in selection of mobile operators. In addition, this paper proposes further research in some areas especially where the study came up with different findings from what the theory has in place.

An Overview of Nano-Particles Effect on Mechanical Properties of Composites

Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP.

Development of a Weed Suppression Robot for Rice Cultivation: Weed Suppression and Posture Control

Weed suppression and weeding are necessary measures for rice cultivation. Weed suppression precedes the process of weeding. It means suppressing the growth of young weeds and creating a weed-less environment. If we suppress the growth of weeds, we can reduce the number of weeds in a paddy field. This would result in a reduction of the weeding work load. In this paper, we will show how we developed a weed suppression robot for the purpose of reducing the weeding work load. The robot has a laser range finder for autonomous mobility and a robot arm for weed suppression. It travels along the rice rows without stepping on and injuring the rice plants in a paddy field. The robot arm applies force to the weed seedlings and thereby suppresses the growth of weeds. This paper will explain the methodology of the autonomous mobile, the experiment in weed suppression, and the method of controlling the robot’s posture on uneven ground.

The Discriminate Analysis and Relevant Model for Mapping Export Potential

There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.

Generalized Chebyshev Collocation Method

In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.

On the Perceived Awareness of Physical Education Teachers on Adoptable ICTs for PE

Nations are still finding it quite difficult to win mega sport competitions despite the major contribution of sport to society in terms of social and economic development, personal health, and in education. Even though the world of sports has been transformed into a huge global economy, it is important to note that the first step of sport is usually its introduction to children at school through physical education or PE. In other words, nations who do not win mega sport competitions also suffer from a weak and neglected PE system. This problem of the neglect of PE systems is the main motivation of this research aimed at examining the factors affecting the perceived awareness of physical education teachers on the ICTs that are adoptable for the teaching and learning of physical education. Two types of research objectives will materialize this aim: relevant theories will be identified in relation to the analysis of the perceived ICT awareness of PE teachers and subsequent models will be compiled and designed from existing literature; the empirical testing of such theories and models will also be achieved through the survey of PE teachers from the Camperdown magisterial district of the KwaZulu-Natal province of South Africa. The main hypothesis at the heart of this study is the relationship between the demographics of PE teachers, their behavior both as individuals and as social entities, and their perceived awareness of the ICTs that are adoptable for PE, as postulated by existing literature; except that this study categorizes human behavior under performance expectancy, computer attitude, and social influence. This hypothesis was partially confirmed by the survey conducted by this research in the sense that performance expectancy and teachers’ age, gender, computer usage, and class size were found to be the only factors affecting their awareness of ICTs for physical education.

Design and Development of an Efficient and Cost-Effective Microcontroller-Based Irrigation Control System to Enhance Food Security

The development of the agricultural sector in Ghana has been reliant on the use of irrigation systems to ensure food security. However, the manual operation of these systems has not facilitated their maximum efficiency due to human limitations. This paper seeks to address this problem by designing and implementing an efficient, cost effective automated system which monitors and controls the water flow of irrigation through communication with an authorized operator via text messages. The automatic control component of the system is timer based with an Atmega32 microcontroller and a real time clock from the SM5100B cellular module. For monitoring purposes, the system sends periodic notification of the system on the performance of duty via SMS to the authorized person(s). Moreover, the GSM based Irrigation Monitoring and Control System saves time and labour and reduces cost of operating irrigation systems by saving electricity usage and conserving water. Field tests conducted have proven its operational efficiency and ease of assessment of farm irrigation equipment due to its costeffectiveness and data logging capabilities.

Bioethanol: Indonesian Macro-Algae as a Renewable Feedstock for Liquid Fuel

This experimental study aims at studying the conversion of macro-algae into bioethanol under several steps of procedure: preparation, pre-treatment, fermentation, and distillation. The main objective of this work was to investigate the role of buffer’s type as a stabiliser of pH level and fermentation time on the yield of ethanol. For this purpose, experiments were carried out on biomass macro-algae to de-couple the pre-treatment and fermentation processes from those associated with distillation process. β- glucosidase was used as cellulose decomposer during hydrolysis step and yeast was used during fermentation process. The species of macro-algae utilised as energy feedstock was Ulva lactuca and it was harvested from southern coast of Central of Java Island – Indonesia. Experiments were conducted in a simple fermenter over a different buffer: citrate buffer and acetic buffer, and over a range of fermentation times between 5 to 20 days. The ethanol production was found to be significantly affected by both variables. The optimum time of fermentation was 10 days with citrate buffer; result in 0.88458% of ethanol, and the ethanol content after distillation process was shown 0.985015%.

Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR datasets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

A Video-Based Observation and Analysis Method to Assess Human Movement and Behaviour in Crowded Areas

Human movement in the real world provides important information for developing human behaviour models and simulations. However, it is difficult to assess ‘real’ human behaviour since there is no established method available. As part of the AUNTSUE (Accessibility and User Needs in Transport – Sustainable Urban Environments) project, this research aimed to propose a method to assess human movement and behaviour in crowded areas. The method is based on the three major steps of video recording, conceptual behavior modelling and video analysis. The focus is on individual human movement and behaviour in normal situations (panic situations are not considered) and the interactions between individuals in localized areas. Emphasis is placed on gaining knowledge of characteristics of human movement and behaviour in the real world that can be modelled in the virtual environment.

Explicit Feedback Linearization of Magnetic Levitation System

This study proposes the transformation of nonlinear Magnetic Levitation System into linear one, via state and feedback transformations using explicit algorithm. This algorithm allows computing explicitly the linearizing state coordinates and feedback for any nonlinear control system, which is feedback linearizable, without solving the Partial Differential Equations. The algorithm is performed using a maximum of N-1 steps where N being the dimension of the system.

Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University

The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.

A New Inversion-free Method for Hermitian Positive Definite Solution of Matrix Equation

An inversion-free iterative algorithm is presented for solving nonlinear matrix equation with a stepsize parameter t. The existence of the maximal solution is discussed in detail, and the method for finding it is proposed. Finally, two numerical examples are reported that show the efficiency of the method.

Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes

Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.