Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Beta-spline Surface Fitting to Multi-slice Images

Beta-spline is built on G2 continuity which guarantees smoothness of generated curves and surfaces using it. This curve is preferred to be used in object design rather than reconstruction. This study however, employs the Beta-spline in reconstructing a 3- dimensional G2 image of the Stanford Rabbit. The original data consists of multi-slice binary images of the rabbit. The result is then compared with related works using other techniques.

Privacy in New Mobile Payment Protocol

The increasing development of wireless networks and the widespread popularity of handheld devices such as Personal Digital Assistants (PDAs), mobile phones and wireless tablets represents an incredible opportunity to enable mobile devices as a universal payment method, involving daily financial transactions. Unfortunately, some issues hampering the widespread acceptance of mobile payment such as accountability properties, privacy protection, limitation of wireless network and mobile device. Recently, many public-key cryptography based mobile payment protocol have been proposed. However, limited capabilities of mobile devices and wireless networks make these protocols are unsuitable for mobile network. Moreover, these protocols were designed to preserve traditional flow of payment data, which is vulnerable to attack and increase the user-s risk. In this paper, we propose a private mobile payment protocol which based on client centric model and by employing symmetric key operations. The proposed mobile payment protocol not only minimizes the computational operations and communication passes between the engaging parties, but also achieves a completely privacy protection for the payer. The future work will concentrate on improving the verification solution to support mobile user authentication and authorization for mobile payment transactions.

QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance

Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.

A Post Keynesian Environmental Macroeconomic Model for Agricultural Water Sustainability under Climate Change in the Murray-Darling Basin, Australia

Climate change has profound consequences for the agriculture of south-eastern Australia and its climate-induced water shortage in the Murray-Darling Basin. Post Keynesian Economics (PKE) macro-dynamics, along with Kaleckian investment and growth theory, are used to develop an ecological-economic system dynamics model of this complex nonlinear river basin system. The Murray- Darling Basin Simulation Model (MDB-SM) uses the principles of PKE to incorporate the fundamental uncertainty of economic behaviors of farmers regarding the investments they make and the climate change they face, particularly as regards water ecosystem services. MDB-SM provides a framework for macroeconomic policies, especially for long-term fiscal policy and for policy directed at the sustainability of agricultural water, as measured by socio-economic well-being considerations, which include sustainable consumption and investment in the river basin. The model can also reproduce other ecological and economic aspects and, for certain parameters and initial values, exhibit endogenous business cycles and ecological sustainability with realistic characteristics. Most importantly, MDBSM provides a platform for the analysis of alternative economic policy scenarios. These results reveal the importance of understanding water ecosystem adaptation under climate change by integrating a PKE macroeconomic analytical framework with the system dynamics modelling approach. Once parameterised and supplied with historical initial values, MDB-SM should prove to be a practical tool to provide alternative long-term policy simulations of agricultural water and socio-economic well-being.

Study on Geometric Design of Nay Pyi Taw-Mandalay Expressway and Possible Improvements; Sagarinn-Myinsain Portion

Geometric design is an important part of planning process design for physical highway to fill up basic function of roads, to give good traffic service. It is found that most of the road safety problems occur at the horizontal curves and complex-compound curves. In this paper, review on Sagarinn-Myinsain Portion of Nay Pyi Taw - Mandalay highway has been conducted in aspect of geometric design induced road safety condition. Horizontal alignment of geometric features and curve details are reviewed based on (AASHTO) standard and revised by Autodesk Land Desktop Software. Moreover, 85th Percentile Operation Speeds (V85) with driver confidence on horizontal curves is evaluated in order to obtain the range of highway safety factor (FS). The length of the selected highway portion is 13.65 miles and 8 lanes. The results of this study can be used to investigate the possible hazardous locations in advance and to revise how design radius and super elevation should be for better road safety performance for the selected portion. Moreover, the relationship between highway safety and highway geometry characteristics can also be known.

Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives

The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.

Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms

Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.

Temporal Change of Fractal Dimension of Explosion Earthquakes and Harmonic Tremors at Semeru Volcano, East Java, Indonesia, using Critical Exponent Method

Fractal analyses of successive event of explosion earthquake and harmonic tremor recorded at Semeru volcano were carried out to investigate the dynamical system regarding to their generating mechanism. The explosive eruptions accompanied by explosion earthquakes and following volcanic tremor which are generated by continuous emission of volcanic ash. The fractal dimension of successive event of explosion and harmonic tremor was estimated by Critical Exponent Method (CEM). It was found that the method yield a higher fractal dimension of explosion earthquakes and gradually decrease during the occurrence of harmonic tremor, and can be considerably as correlated complexity of the source mechanism from the variance of fractal dimension.

Study of Sickle Cell Syndromes in the Population of the Region of Batna

Sickle cell anemia is a recessive genetic disease caused by the presence in the red blood cell, of abnormal hemoglobin called hemoglobin S. It results from the replacement in the beta chain of the acid glutamic acid by valin at position 6. Topics may be homozygous (SS) or heterozygous (AS) most often asymptomatic. Other mutations result in compound heterozygous: - Synthesis of hemoglobin C mutation in the sixth leucin codon (heterozygous SC); - ß-thalassemia (heterozygous S-ß thalassemia). SS homozygous, heterozygous SC and S- ß -thalassemia are grouped under the major sickle cell syndromes. To make a laboratory diagnosis of hemoglobinopathies in a portion of the population in region of Batna, our study was conducted on 115 patients with suspected sickle cell anemia, all cases have benefited from hematological tests as blood count (count RBC, calculated erythrocyte indices, MCV and MCHC, measuring the hemoglobin concentration) and a biochemical test in this case electrophoresis CAPILLARYS HEMOGLOBIN (E). The results showed: 27 cases of sickle cell anemia were found on 115 suspected cases, 73,03% homozygous sickle cell disease and 59,25% sickle cell trait. Finally, the double heterozygous S/C, represent the incidence rate of 3, 70%.

Analysis of Cost Estimation and Payment Systems for Consultant Contracts in the US, Japan, China and the UK

Determining reasonable fees is the main objective of designing the cost estimation and payment systems for consultant contracts. However, project clients utilize different cost estimation and payment systems because of their varying views on the reasonableness of consultant fees. This study reviews the cost estimation and payment systems of consultant contracts for five countries, including the US (Washington State Department of Transportation), Japan (Ministry of Land, Infrastructure, Transport and Tourism), China (Engineering Design Charging Standard) and UK (Her Majesty's Treasure). Specifically, this work investigates the budgeting process, contractor selection method, contractual price negotiation process, cost review, and cost-control concept of the systems used in these countries. The main finding indicates that that project client-s view on whether the fee is high will affect the way he controls it. In the US, the fee is commonly considered to be high. As a result, stringent auditing system (low flexibility given to the consultant) is then applied. In the UK, the fee is viewed to be low by comparing it to the total life-cycle project cost. Thus, a system that has high flexibility in budgeting and cost reviewing is given to the consultant. In terms of the flexibility allowed for the consultant, the systems applied in Japan and China fall between those of the US and UK. Both the US and UK systems are helpful in determining a reasonable fee. However, in the US system, rigid auditing standards must be established and additional cost-audit manpower is required. In the UK system, sufficient historical cost data should be needed to evaluate the reasonableness of the consultant-s proposed fee

Effects of Silicon Oxide Filler Material and Fibre Orientation on Erosive Wear of GF/EP Composites

Materials added to the matrix help improving operating properties of a composite. This experimental study has targeted to investigate this aim where Silicon Oxide particles were added to glass fibre and epoxy resin at an amount of 15% to the main material to obtain a sort of new composite material. Erosive wear behavior of epoxy-resin dipped composite materials reinforced with glass fibre and Silicon Oxide under three different impingement angles (30°, 60° and 90°), three different impact velocities (23, 34 and 53 m/s), two different angular Aluminum abrasive particle sizes (approximately 200 and 400 μm) and the fibre orientation of 45° (45/-45) were investigated. In the test results, erosion rates were obtained as functions of impingement angles, impact velocities, particle sizes and fibre orientation. Moreover, materials with addition of Silicon Oxide filler material exhibited lower wear as compared to neat materials with no added filler material. In addition, SEM views showing worn out surfaces of the test specimens were scrutinized.

Effect of Phosphate Solubilization Microorganisms (PSM) and Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Yield Components of Corn (Zea mays L.)

In order to study the effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn Zea mays (L. cv. SC604) an experiment was conducted at research farm of Sari Agricultural Sciences and Natural Resources University, Iran during 2007. Experiment laid out as split plot based on randomized complete block design with three replications. Three levels of manures (consisted of 20 Mg.ha-1 farmyard manure, 15 Mg.ha-1 green manure and check or without any manures) as main plots and eight levels of biofertilizers (consisted of 1-NPK or conventional fertilizer application; 2-NPK+PSM+PGPR; 3 NP50%K+PSM+PGPR; 4- N50%PK+PSM +PGPR; 5-N50%P50%K+PSM+ PGPR; 6-PK+PGPR; 7- NK+PSM and 8-PSM+PGPR) as sub plots were treatments. Results showed that farmyard manure application increased row number, ear weight, grain number per ear, grain yield, biological yield and harvest index compared to check. Furthermore, using of PSM and PGPR in addition to conventional fertilizer applications (NPK) could improve ear weight, row number and grain number per row and ultimately increased grain yield in green manure and check plots. According to results in all fertilizer treatments application of PSM and PGPR together could reduce P application by 50% without any significant reduction of grain yield. However, this treatment could not compensate 50% reduction of N application.

Seed Treatment during Germination in Linseed to Overcome Salt and Drought Stresses (Linum usitatissimum L.)

Evaluation of crop plants resistance to environmental stresses specially in germination stage is a critical factor in their selection in different conditions of cultivation. Therefore use of a procedure in controllable situation can help to evaluate plants reaction to stress quickly and precisely. In order to study germination characteristics of flax in water and salinity stress conditions were conducted two laboratories experimental. The two experimental were conducted in 4-replicant completing random design for salinity and water stress. The treatment, for salinity and water stress was three potential (zero, 40, 80 mM) of NaCl and three potential (zero, -2, -4 bar) of PEG respectively. Germination percentage and rate, in addition to Radical and plumule length and dry-weight and plumule/Radical ration were measured. All of characteristics reduce under water stress conditions. salinity stress significant reduce germination rate and Radical and plumule length of flax seeds. Hydropriming and osmopriming significant increased germination rate, plumule length and plumule/Radical ration ration of flax seeds. But germination percentage and Radical and plumule dry weight significant increased only in hydropriming treat. Hydropriming and osmopriming could not be used to improved germination under saline and drought stress. But has more tolerance in salinity and drought stress in flax by less reduce in Radical and plumule length under saline and drought stress.

Biochemical and Multiplex PCR Analysis of Toxic Crystal Proteins to Determine Genes in Bacillus thuringiensis Mutants

The Egyptian Bacillus thuringiensis isolate (M5) produce crystal proteins that is toxic against insects was irradiated with UV light to induce mutants. Upon testing 10 of the resulting mutants for their toxicity against cotton leafworm larvae, the three mutants 62, 64 and 85 proved to be the most toxic ones. Upon testing these mutants along with their parental isolate by SDS-PAGE analysis of spores-crystals proteins as well as vegetative cells proteins, new induced bands appeared in the three mutants by UV radiation and also they showed disappearance of some other bands as compared with the wild type isolate. Multiplex PCR technique, with five sets of specific primers, was used to detect the three types of cryI genes cryIAa, cryIAb and cryIAc. Results showed that these three genes exist, as distinctive bands, in the wild type isolate (M5) as well as in mutants 62 and 85, while the mutant 64 had two distinctive bands of cryIAb and cryIAc genes, and a faint band of cryI Aa gene. Finally, these results revealed that mutant 62 is considered as the promising mutant since it is UV resistant, highly toxic against Spodoptera littoralis and active against a wide range of Lepidopteran insects.

Probabilistic Bayesian Framework for Infrared Face Recognition

Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.

Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO

The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).

Detecting Defects in Textile Fabrics with Optimal Gabor Filters

This paper investigates the problem of automated defect detection for textile fabrics and proposes a new optimal filter design method to solve this problem. Gabor Wavelet Network (GWN) is chosen as the major technique to extract the texture features from textile fabrics. Based on the features extracted, an optimal Gabor filter can be designed. In view of this optimal filter, a new semi-supervised defect detection scheme is proposed, which consists of one real-valued Gabor filter and one smoothing filter. The performance of the scheme is evaluated by using an offline test database with 78 homogeneous textile images. The test results exhibit accurate defect detection with low false alarm, thus showing the effectiveness and robustness of the proposed scheme. To evaluate the detection scheme comprehensively, a prototyped detection system is developed to conduct a real time test. The experiment results obtained confirm the efficiency and effectiveness of the proposed detection scheme.

A High Accuracy Measurement Circuit for Soil Moisture Detection

The study of soil for agriculture purposes has remained the main focus of research since the beginning of civilization as humans- food related requirements remained closely linked with the soil. The study of soil has generated an interest among the researchers for very similar other reasons including transmission, reflection and refraction of signals for deploying wireless underground sensor networks or for the monitoring of objects on (or in ) soil in the form of better understanding of soil electromagnetic characteristics properties. The moisture content has been very instrumental in such studies as it decides on the resistance of the soil, and hence the attenuation on signals traveling through soil or the attenuation the signals may suffer upon their impact on soil. This work is related testing and characterizing a measurement circuit meant for the detection of moisture level content in soil.

Motivation Factors to Influence the Decision to Choose Thai Fabric

The purpose of this research was to study the motivation factors to influence the decision to choose Thai Fabric. A multiple-stage sample was utilized to collect 400 samples from working women who had diverse occupations all over Thailand. This research was a quantitative analysis and questionnaire was used a tool to collect data. Descriptive statistics used in this research included percentage, average, and standard deviation and inferential statistics included hypothesis testing of one way ANOVA. The research findings revealed that demographic factors and social factors had an influence to the positive idea of wearing Thai fabric (F = 5.377, P value < 0.05). The respondents who had the age over 41 years old had a better positive idea of wearing Thai fabric than other groups. Moreover, the findings revealed that age had influenced the positive idea of wearing Thai fabric (F = 3.918, P value < 0.05). The respondents who had the age over 41 years old also had stronger believe that wearing Thai fabric to work and social gatherings are socially acceptable than other groups.