Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions

This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.

Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge

The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.

Self-Care Behavior and Performance Level Associated with Algerian Chronically Ill Patients

Chronic illnesses affect many Algerians. It is possible to investigate the impact of illness representations and coping on quality of life and whether illness representations are indirectly associated with quality of life through their influence on coping. This study aims at investigating the relationship between illness perception, coping strategies and quality of life with chronic illness. Illness perceptions are indirectly associated with the quality of life through their influence on coping mediation. A sample of 316 participants with chronic illness living in the region of Batna, Algeria, has been adopted in this study. A correlation statistical analysis is used to determine the relationship between illness perception, coping strategies, and quality of life. Multiple regression analysis was employed to highlight the predictive ability of the dimensions of illness perception and coping strategies on the dependent variables of quality of life, where mediation analysis is considered in the exploration of the indirect effect significance of the mediator. This study provides insights about the relationship between illness perception, coping strategies and quality of life in the considered sample (r = 0.39, p < 0.01). Therefore, it proves that there is an effect of illness identity perception, external and medical attributions related to emotional role, physical functioning, and mental health perceived, and these were fully mediated by the asking for assistance (c’= 0.04, p < 0.05), the guarding (c’= 0.00, p < 0.05), and the task persistence strategy (c’= 0.05, p < 0.05). The findings imply partial support for the common-sense model of illness representations in a chronic illness population. Directions for future research are highlighted, as well as implications for psychotherapeutic interventions which target unhelpful beliefs and maladaptive coping strategies (e.g., cognitive behavioral therapy).

The Use of Bituminaria bituminosa (L.) Stirton and Microbial Biotechnologies for Restoration of Degraded Pastoral Lands: The Case of the Middle Atlas of Morocco

Rangelands and silvopastoral systems of the middle Atlas are under a heavy pressure, which led to pasture degradation, invasion by non-palatable and toxic species and edaphic aridification due to the regression of the global vegetation cover. In this situation, the introduction of multipurpose leguminous shrubs, such as Bituminaria bituminosa (L.) Stirton, commonly known as bituminous clover, could be a promising socio-ecological alternative for the rehabilitation of these degraded areas. The application of biofertilizers like plant growth promoting rhizobacteria especially phosphate solubilizing bacteria (PSB) can ensure a successful installation of this plant in the selected degraded areas. The main objective of the present work is to produce well-inoculated seedlings using the best efficient PSB strains in the greenhouse to increase their ability to resist to environmental constraints once transplanted to the field in the central Middle Atlas.

Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

UEFA Super Cup: Economic Effects on Georgian Economy

Tourism is the most viable and sustainable economic development option for Georgia and one of the main sources of foreign exchange earnings. Events are considered as one of the most effective ways to attract foreign visitors to the country, and, recently, the government of Georgia has begun investing in this sector very actively. This article stresses the necessity of research based economic policy in the tourism sector. In this regard, it is of paramount importance to measure the economic effects of the events which are subsidized by taxpayers’ money. The economic effect of events can be analyzed from two perspectives; financial perspective of the government and perspective of economic effects of the tourism administration. The article emphasizes more realistic and all-inclusive focus of the economic effect analysis of the tourism administration as it concentrates on the income of residents and local businesses, part of which generate tax revenues for the government. The public would like to know what the economic returns to investment are. In this article, the methodology used to describe the economic effects of UEFA Super Cup held in Tbilisi, will help to answer this question. Methodology is based on three main principles and covers three stages. Using the suggested methodology article estimates the direct economic effect of UEFA Super cup on Georgian economy. Although the attempt to make an economic effect analysis of the event was successful in Georgia, some obstacles and insufficiencies were identified during the survey. The article offers several recommendations that will help to refine methodology and improve the accuracy of the data. Furthermore, it is very important to receive the correct standard of measurement of events in Georgia. In this caseü non-ethical acts of measurement which are widely utilized by different research companies will not trigger others to show overestimated effects. It is worth mentioning that to author’s best knowledge, this is the first attempt to measure the economic effect of an event held in Georgia.

Influence of Surfactant on Supercooling Degree of Aqueous Titania Nanofluids in Energy Storage Systems

Considering the demand to reduce global warming potential and importance of solidification in various applications, there is an increasing interest in energy storage systems to find the efficient phase change materials. Therefore, this paper presents an experimental study and comparison on the potential of titania nanofluids with and without surfactant for cooling energy storage systems. A designed cooling generation device based on compression refrigeration cycle is used to explore nanofluids solidification characteristics. In this work, titania nanoparticles of 0.01, 0.02 and 0.04 wt.% are dispersed in deionized water as base fluid. Measurement of phase change parameters of nanofluids illustrates that the addition of polyvinylpyrrolidone (PVP) as surfactant to titania nanofluids advances the onset nucleation time and leads to lower solidification time. Also, the experimental results show that only adding 0.02 wt.% titania nanoparticles, especially in the case of nanofluids with a surfactant, can evidently reduce the supercooling degree by nearly 70%. Hence, it is concluded that there is a great energy saving potential in the energy storage systems using titania nanofluid with PVP.

Effective Wind-Induced Natural Ventilation in a Residential Apartment Typology

In India, cooling loads in residential sector is a major contributor to its total energy consumption. Due to the increasing cooling need, the market penetration of air-conditioners is further expected to rise. Natural Ventilation (NV), however, possesses great potential to save significant energy consumption especially for residential buildings in moderate climates. As multifamily residential apartment buildings are designed by repetitive use of prototype designs, deriving individual NV based design prototype solutions for a combination of different wind incidence angles and orientations would provide significant opportunity to address the rise in cooling loads by residential sector. This paper presents the results of NV performance of a selected prototype apartment design with a cluster of four units in Pune, India, and an attempt to improve the NV performance through design modifications. The water table apparatus, a physical modelling tool, is used to study the flow patterns and simulate wind-induced NV performance. Quantification of NV performance is done by post processing images captured from video recordings in terms of percentage of area with good and poor access to ventilation. NV performance of the existing design for eight wind incidence angles showed that of the cluster of four units, the windward units showed good access to ventilation for all rooms, and the leeward units had lower access to ventilation with the bedrooms in the leeward units having the least access. The results showed improved performance in all the units for all wind incidence angles to more than 80% good access to ventilation. Some units showed an additional improvement to more than 90% good access to ventilation. This process of design and performance evaluation improved some individual units from 0% to 100% for good access to ventilation. The results demonstrate the ease of use and the power of the water table apparatus for performance-based design to simulate wind induced NV.  

Modeling of Alpha-Particles’ Epigenetic Effects in Short-Term Test on Drosophila melanogaster

In recent years, interest in ecogenetic and biomedical problems related to the effects on the population of radon and its daughter decay products has increased significantly. Of particular interest is the assessment of the consequence of irradiation at hazardous radon areas, which includes the Almaty region due to the large number of tectonic faults that enhance radon emanation. In connection with the foregoing, the purpose of this work was to study the genetic effects of exposure to supernormal radon doses on the alpha-radiation model. Irradiation does not affect the growth of the cell, but rather its ability to differentiate. In addition, irradiation can lead to somatic mutations, morphoses and modifications. These damages most likely occur from changes in the composition of the substances of the cell. Such changes are epigenetic since they affect the regulatory processes of ontogenesis. Variability in the expression of regulatory genes refers to conditional mutations that modify the formation of signs of intraspecific similarity. Characteristic features of these conditional mutations are the dominant type of their manifestation, phenotypic asymmetry and their instability in the generations. Currently, the terms “morphosis” and “modification” are used to describe epigenetic variability, which are maintained in Drosophila melanogaster cultures using linkaged X- chromosomes, and the mutant X-chromosome is transmitted along the paternal line. In this paper, we investigated the epigenetic effects of alpha particles, whose source in nature is mainly radon and its daughter decay products. In the experiment, an isotope of plutonium-238 (Pu238), generating radiation with an energy of about 5500 eV, was used as a source of alpha particles. In an experiment in the first generation (F1), deformities or morphoses were found, which can be called "radiation syndromes" or mutations, the manifestation of which is similar to the pleiotropic action of genes. The proportion of morphoses in the experiment was 1.8%, and in control 0.4%. In this experiment, the morphoses in the flies of the first and second generation looked like black spots, or melanomas on different parts of the imago body; "generalized" melanomas; curled, curved wings; shortened wing; bubble on one wing; absence of one wing, deformation of thorax, interruption and violation of tergite patterns, disruption of distribution of ocular facets and bristles; absence of pigmentation of the second and third legs. Statistical analysis by the Chi-square method showed the reliability of the difference in experiment and control at P ≤ 0.01. On the basis of this, it can be considered that alpha particles, which in the environment are mainly generated by radon and its isotopes, have a mutagenic effect that manifests itself, mainly in the formation of morphoses or deformities.

Self-Healing Phenomenon Evaluation in Cementitious Matrix with Different Water/Cement Ratios and Crack Opening Age

Concrete elements are subject to cracking, which can be an access point for deleterious agents that can trigger pathological manifestations reducing the service life of these structures. Finding ways to minimize or eliminate the effects of this aggressive agents’ penetration, such as the sealing of these cracks, is a manner of contributing to the durability of these structures. The cementitious self-healing phenomenon can be classified in two different processes. The autogenous self-healing that can be defined as a natural process in which the sealing of this cracks occurs without the stimulation of external agents, meaning, without different materials being added to the mixture, while on the other hand, the autonomous seal-healing phenomenon depends on the insertion of a specific engineered material added to the cement matrix in order to promote its recovery. This work aims to evaluate the autogenous self-healing of concretes produced with different water/cement ratios and exposed to wet/dry cycles, considering two ages of crack openings, 3 days and 28 days. The self-healing phenomenon was evaluated using two techniques: crack healing measurement using ultrasonic waves and image analysis performed with an optical microscope. It is possible to observe that by both methods, it possible to observe the self-healing phenomenon of the cracks. For young ages of crack openings and lower water/cement ratios, the self-healing capacity is higher when compared to advanced ages of crack openings and higher water/cement ratios. Regardless of the crack opening age, these concretes were found to stabilize the self-healing processes after 80 days or 90 days.

Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Automated, Objective Assessment of Pilot Performance in Simulated Environment

Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).

Performance Analysis of M-Ary Pulse Position Modulation in Multihop Multiple Input Multiple Output-Free Space Optical System over Uncorrelated Gamma-Gamma Atmospheric Turbulence Channels

The performance of Decode and Forward (DF) multihop Free Space Optical ( FSO) scheme deploying Multiple Input Multiple Output (MIMO) configuration under Gamma-Gamma (GG) statistical distribution, that adopts M-ary Pulse Position Modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of Symbol-Error Rates (SERs) respectively. A closed form formula related to the Probability Density Function (PDF) is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.

Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Linear Prediction System in Measuring Glucose Level in Blood

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

The Use of Music Therapy to Improve Non-Verbal Communication Skills for Children with Autism

The number of school-aged children with autism in Indonesia has been increasing each year. Autism is a developmental disorder which can be diagnosed in childhood. One of the symptoms is the lack of communication skills. Music therapy is known as an effective treatment for children with autism. Music elements and structures create a good space for children with autism to express their feelings and communicate their thoughts. School-aged children are expected to be able to communicate non-verbally very well, but children with autism experience the difficulties of communicating non-verbally. The aim of this research is to analyze the significance of music therapy treatment to improve non-verbal communication tools for children with autism. This research informs teachers and parents on how music can be used as a media to communicate with children with autism. The qualitative method is used to analyze this research, while the result is described with the microanalysis technique. The result is measured specifically from the whole experiment, hours of every week, minutes of every session, and second of every moment. The samples taken are four school-aged children with autism in the age range of six to 11 years old. This research is conducted within four months started with observation, interview, literature research, and direct experiment. The result demonstrates that music therapy could be effectively used as a non-verbal communication tool for children with autism, such as changes of body gesture, eye contact, and facial expression.

High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading

Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were success­fully implemented for several high-rise buildings world­wide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be deter­mined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better under­standing of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measure­ments shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measure­ments are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.

Evaluating Health-Related Quality of Life of Lost to Follow-Up Tuberculosis Patients in Yemen

Tuberculosis (TB) is considered as a major disease that affects daily activities and impairs health-related quality of life (HRQoL). The impact of TB on HRQoL can affect treatment outcome and may lead to treatment defaulting. Therefore, this study aims to evaluate the HRQoL of TB treatment lost to follow-up during and after treatment in Yemen. For this aim, this prospective study enrolled a total of 399 TB lost to follow-up patients between January 2011 and December 2015. By applying HRQoL criteria, only 136 fill the survey during treatment. Moreover, 96 were traced and fill out the HRQoL survey. All eight HRQol domains were categorized into the physical component score (PCS) and mental component score (MCS), which were calculated using QM scoring software. Results show that all lost to follow-up TB patients reported a score less than 47 for all eight domains, except general health (67.3) during their treatment period. Low scores of 27.9 and 29.8 were reported for emotional role limitation (RE) and mental health (MH), respectively. Moreover, the mental component score (MCS) was found to be only 28.9. The trace lost follow-up shows a significant improvement in all eight domains and a mental component score of 43.1. The low scores of 27.9 and 29.8 for role emotion and mental health, respectively, in addition to the MCS score of 28.9, show that severe emotional condition and reflect the higher depression during treatment period that can result to lost to follow-up. The low MH, RE, and MCS can be used as a clue for predicting future TB treatment lost to follow-up.

Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.