Virtual Reality for PostCOVID-19 Stroke: A Case Report

COVID-19 has been associated with stroke and neurological complications. The patient was a 59-year-old male presented with sudden left hemiparesis and diplopia due to cavernous sinus thrombosis (CST) on 28/03/2020. The COVID-19 test was positive. Multislice computerized tomography (MSCT) showed ischemic infarction. He underwent surgical sinectomy 9 days after admission. Physiotherapy began for him on August 2020. Our game-based virtual reality (VR) technology developed for stroke patients was based on upper extremity exercises and function for stroke. After 6 weeks of VR therapy plus conventional physiotherapy exercises (18 sessions, three times per week, 60 minutes each session), there were significant improvements in Brunnstrom Motor Recovery Stage (from “4” to “5”), Fugl-Meyer Scale score of upper extremity section (from 49 to 54), and Modified Barthel Index (from 15 to 18). There were no adverse effects. This case with stroke post COVID-19 due to the CST showed the usefulness of VR therapy used as an adjunct to conventional physiotherapy in improving affected upper extremity.

Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial

Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of virtual reality (VR) beside conventional rehabilitation versus conventional rehabilitation alone on the spasticity and motor function in stroke patients. Materials and methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were Modified Ashworth scale, Recovery Stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in combination group (P = 0.003). Only wrist extension was varied between groups and was better in combination group. The variables generally had statistically significant difference (P < 0.05). Conclusion: VR plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.

Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Foot Recognition Using Deep Learning for Knee Rehabilitation

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

A Brain Controlled Robotic Gait Trainer for Neurorehabilitation

This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.

The Use of Bituminaria bituminosa (L.) Stirton and Microbial Biotechnologies for Restoration of Degraded Pastoral Lands: The Case of the Middle Atlas of Morocco

Rangelands and silvopastoral systems of the middle Atlas are under a heavy pressure, which led to pasture degradation, invasion by non-palatable and toxic species and edaphic aridification due to the regression of the global vegetation cover. In this situation, the introduction of multipurpose leguminous shrubs, such as Bituminaria bituminosa (L.) Stirton, commonly known as bituminous clover, could be a promising socio-ecological alternative for the rehabilitation of these degraded areas. The application of biofertilizers like plant growth promoting rhizobacteria especially phosphate solubilizing bacteria (PSB) can ensure a successful installation of this plant in the selected degraded areas. The main objective of the present work is to produce well-inoculated seedlings using the best efficient PSB strains in the greenhouse to increase their ability to resist to environmental constraints once transplanted to the field in the central Middle Atlas.

Program of Health/Safety Integration and the Total Worker Health Concept in the Improvement of Absenteeism of the Work Accommodation Management

Introduction: There is a worldwide trend for the employer to be aware of investing in health promotion that goes beyond occupational hygiene approaches with the implementation of a comprehensive program with integration between occupational health and safety, and social/psychosocial responsibility in the workplace. Work accommodation is a necessity in most companies as it allows the worker to return to its function respecting its physical limitations. This study had the objective to verify if the integration of health and safety in the companies, with the inclusion of the concept of TWH promoted by an occupational health service has impacted in the management of absenteeism of workers in work accommodation. Method: A retrospective and paired cohort study was used, in which the impact of the implementation of the Program for the Health/Safety Integration and Total Worker Health Concept (PHSITWHC) was evaluated using the indices of absenteeism, health attestations, days and hours of sick leave of workers that underwent job accommodation/rehabilitation. This was a cohort study and the data were collected from January to September of 2017, prior to the initiation of the integration program, and compared with the data obtained from January to September of 2018, after the implementation of the program. For the statistical analysis, the student's t-test was used, with statistically significant differences being made at p < 0.05. Results: The results showed a 35% reduction in the number of absenteeism rate in 2018 compared to the same period in 2017. There was also a significant reduction in the total numbers of days of attestations/absences (mean of 2,8) as well as days of attestations, absence and sick leaves (mean of 5,2) in 2018 data after the implementation of PHSITWHC compared to 2017 data, means of 4,3 and 25,1, respectively, prior to the program. Conclusion: It can be concluded that the inclusion of the PHSITWHC was associated with a reduction in the rate of absenteeism of workers that underwent job accommodation. It was observed that, once health and safety were approached and integrated with the inclusion of the TWH concept, it was possible to reduce absenteeism, and improve worker’s quality of life and wellness, and work accommodation management.

Theory and Reality on Working Life of People with Disability: The Case in Poland

Work for everyone, especially for person with disability is a condition in independence; it secures basic needs and develops manual and intellectual capabilities. The work is a source of income, and it builds and strengthens of self-esteem and competence. The purpose of this article is to identify work as an important factor in everyone’s life, despite Polish disabled persons rarely having the chance to undertake a job. In order to achieve this purpose, two methods were used: comparative and qualitative. The theoretical part of this article is based on studies of a wide range of Polish and foreign literature devoted to the issue of the occupational development of people with disabilities. The article was also enriched with the institutional and legal analysis types of support for people with disabilities in Poland. Currently, a Polish person with disability who wants to enter or return to the labor market is under a special protection. Those entities employing workers with disabilities may obtain a subsidy for the salary of a person with disabilities. Unfortunately, people with disability in Poland rarely participate in the workforce. The factors that contribute to this include the difficulty in obtaining work, the uncertainty of keeping it, and the low salary offered. Despite that domestic and foreign literature highlight the important role of disabled people as a workforce, very few people with disability in Poland are economically active.

An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber

Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.

Assessment of Rehabilitation Possibilities in Case of Budapest Jewish Quarter Building Stock

The dense urban fabric of the Budapest 7th district is known as the former Jewish Quarter. The majority of the historical building stock contains multi-story tenement houses with courtyards, built around the end of the 19th century. Various rehabilitation and urban planning attempt occurred until today, mostly left unfinished. Present paper collects the past rehabilitation plans, actions and their effect which took place in the former Jewish District of Budapest. The authors aim to assess the boundaries of a complex building stock rehabilitation, by taking into account the monument protection guidelines. As a main focus of the research, structural as well as energetic rehabilitation possibilities are analyzed in case of each building by using Geographic Information System (GIS) methods.

Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

The Role of Public Education in Increasing Public Awareness through Mass Media with Emphasis on Newspapers and TV: Coping with Possible Earthquake in Tehran

This study aimed to evaluate the role of state education in increasing public awareness through mass media (with emphasis on newspapers and TV) coping with possible earthquake in Tehran. All residents aged 15 to 65 who live in the five regions of Tehran (North, South, East, West and Center) during the plan implementation were selected and studied. The required sample size in each region was calculated based on the Cochran formula (n=380). In order to collect and analyze the data, a questionnaire with reliability (82%) and a one-sample t-test has been used, respectively. The results showed that warnings related to the Tehran earthquake affected people in the pre-contemplation stage, while public education through mass media did not promote public awareness about prevention, preparedness and rehabilitation.

A Knee Modular Orthosis Design Based on Kinematic Considerations

This paper addresses attention to a research regarding the design of a knee orthosis in a modular form used on children walking rehabilitation. This research is focused on the human lower limb kinematic analysis which will be used as input data on virtual simulations and prototype validation. From this analysis, important data will be obtained and used as input for virtual simulations of the knee modular orthosis. Thus, a knee orthosis concept was obtained and validated through virtual simulations by using MSC Adams software. Based on the obtained results, the modular orthosis prototype will be manufactured and presented in this article.

Ethnographic Exploration of Elderly Residents' Perceptions and Utilization of Health Care to Improve Their Quality of Life

The increase in proportion of older people in Malaysia has led to a significant growth of health care demands. The aim of this study is to explore how perceived health care needs influence on quality of life among elderly Malay residents who reside in a Malaysian residential home. This study employed a method known as ethnographic research from May 2011 to January 2012. Four data collection strategies were selected as the main data-collecting tools including participant observation, field notes, in-depth interviews, and review of related documents. The nine knowledgeable participants for the present study were selected using the purposive sampling method. Two themes were identified: (1) Medical concerns: Feeling secure, lack of information, inadequate medical staff; and (2) Health promotion: Body condition, health education, physiotherapy and rehabilitation. These results could evoke the attention of policy-makers and care providers to better meet elderly residents’ health care needs.

Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation

For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (±10% of joint torques) were added in each joints.

Long-Term Follow-up of Dynamic Balance, Pain and Functional Performance in Cruciate Retaining and Posterior Stabilized Total Knee Arthroplasty

Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel un-satisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much. Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA on dynamic balance, pain and functional performance following rehabilitation. Methods: Thirty patients with CRTKA (group I), thirty with PSTKA (group II) and fifteen indicated for arthroplasty but weren’t operated on yet (group III) participated in the study. The mean age was 54.53±3.44, 55.13±3.48 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99 and 35.73±1.03 kg/m2 for groups I, II and III respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks preand post-operatively, three, six and twelve months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs, follow-up to all groups for twelve months. Results: The Mixed design MANOVA revealed that group I had significantly lower pain scores and SC time compared with group II three, six and twelve months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly six months post-operatively compared with four weeks pre- and post-operatively and three months postoperatively in groups I and II with the opposite being true four weeks post-operatively. But no significant differences in BBS scores, pain scores and TUG and SC time between six and twelve months postoperatively in groups I and II. Interpretation/Conclusion: CRTKA is preferable to PSTKA, possibly due to the preserved human proprioceptors in the un-excised PCL.

Video-Based System for Support of Robot-Enhanced Gait Rehabilitation of Stroke Patients

We present a dedicated video-based monitoring system for quantification of patient’s attention to visual feedback during robot assisted gait rehabilitation. Two different approaches for eye gaze and head pose tracking are tested and compared. Several metrics for assessment of patient’s attention are also presented. Experimental results with healthy volunteers demonstrate that unobtrusive video-based gaze tracking during the robot-assisted gait rehabilitation is possible and is sufficiently robust for quantification of patient’s attention and assessment of compliance with the rehabilitation therapy.

Real Time Acquisition and Analysis of Neural Response for Rehabilitative Control

Non-invasive Brain Computer Interface like Electroencephalography (EEG) which directly taps neurological signals, is being widely explored these days to connect paralytic patients/elderly with the external environment. However, in India the research is confined to laboratory settings and is not reaching the mass for rehabilitation purposes. An attempt has been made in this paper to analyze real time acquired EEG signal using cost effective and portable headset unit EMOTIV. Signal processing of real time acquired EEG is done using EEGLAB in MATLAB and EDF Browser application software platforms. Independent Component Analysis algorithm of EEGLAB is explored to identify deliberate eye blink in the attained neural signal. Time Frequency transforms and Data statistics obtained using EEGLAB along with component activation results of EDF browser clearly indicate voluntary eye blink in AF3 channel. The spectral analysis indicates dominant frequency component at 1.536000Hz representing the delta wave component of EEG during voluntary eye blink action. An algorithm is further designed to generate an active high signal based on thoughtful eye blink that can be used for plethora of control applications for rehabilitation.