A Weighted Group EI Incorporating Role Information for More Representative Group EI Measurement

Emotional intelligence (EI) is a well-established personal characteristic. It has been viewed as a critical factor which can influence an individual's academic achievement, ability to work and potential to succeed. When working in a group, EI is fundamentally connected to the group members' interaction and ability to work as a team. The ability of a group member to intelligently perceive and understand own emotions (Intrapersonal EI), to intelligently perceive and understand other members' emotions (Interpersonal EI), and to intelligently perceive and understand emotions between different groups (Cross-boundary EI) can be considered as Group emotional intelligence (Group EI). In this research, a more representative Group EI measurement approach, which incorporates the information of the composition of a group and an individual’s role in that group, is proposed. To demonstrate the claim of being more representative Group EI measurement approach, this study adopts a multi-method research design, involving a combination of both qualitative and quantitative techniques to establish a metric of Group EI. From the results, it can be concluded that by introducing the weight coefficient of each group member on group work into the measurement of Group EI, Group EI will be more representative and more capable of understanding what happens during teamwork than previous approaches.

Resilient Modulus and Deformation Responses of Waste Glass in Flexible Pavement System

Experimental investigations are conducted to assess a layered structure of glass (G) - rock (R) blends under the impact of repeated loading. Laboratory tests included sieve analyses, modified compaction test and repeated load triaxial test (RLTT) is conducted on different structures of stratified GR samples to reach the objectives of this study. Waste materials are such essential components in the climate system, and also commonly used in minimising the need for natural materials in many countries. Glass is one of the most widely used groups of waste materials which have been extensively using in road applications. Full range particle size and colours of glass are collected and mixed at different ratios with natural rock material trying to use the blends in pavement layers. Whole subsurface specimen sequentially consists of a single layer of R and a layer of G-R blend. 12G/88R and 45G/55R mix ratios are employed in this research, the thickness of G-R layer was changed, and the results were compared between the pure rock and the layered specimens. The relations between resilient module (Mr) and permanent deformation with sequence number are presented. During the earlier stages of RLTT, the results indicated that the 45G/55R specimen shows higher moduli than R specimen.

Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures

Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.

Pathogenic Bacteria Isolated from Diseased Giant Freshwater Prawn in Shrimp Culture Ponds

Pathogenic bacterial flora was isolated from giant freshwater prawns, Macrobrachium rosenbergii. Infected shrimp samples were collected from BuaBan Aquafarm in Kalasin Province, Thailand, between June and September 2018. Bacterial species were isolated by serial dilution and plated on Thiosulfate Citrate Bile Salt Sucrose (TCBS) agar medium. A total 89 colonies were isolated and identified using the API 20E biochemical tests. Results showed the presence of genera Aeromonas, Citrobacter, Chromobacterium, Providencia, Pseudomonas, Stenotrophomonas and Vibrio. Maximum number of species was recorded in Pseudomonas (50.57%) with minimum observed in Chromobacterium and Providencia (1.12%).

Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers

This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.

Effect of Particle Size on Alkali-Activation of Slag

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy

Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.

Nigerian Football System: Examining Meso-Level Practices against a Global Model for Integrated Development of Mass and Elite Sport

This study was designed to examine mass participation and elite football performance in Nigeria with reference to advance international football management practices. Over 200 sources of literature on sport delivery systems were analyzed to construct a globally applicable model of elite football integrated with mass participation, comprising of the following three levels: macro- (socio-economic, cultural, legislative, and organizational), meso- (infrastructures, personnel, and services enabling sport programs) and micro-level (operations, processes, and methodologies for development of individual athletes). The model has received scholarly validation and showed to be a framework for program analysis that is not culturally bound. The Smolianov and Zakus model has been employed for further understanding of sport systems such as US soccer, US Rugby, swimming, tennis, and volleyball as well as Russian and Dutch swimming. A questionnaire was developed using the above-mentioned model. Survey questions were validated by 12 experts including academicians, executives from sport governing bodies, football coaches, and administrators. To identify best practices and determine areas for improvement of football in Nigeria, 120 coaches completed the questionnaire. Useful exemplars and possible improvements were further identified through semi-structured discussions with 10 Nigerian football administrators and experts. Finally, content analysis of Nigeria Football Federation’s website and organizational documentation was conducted. This paper focuses on the meso-level of Nigerian football delivery, particularly infrastructures, personnel, and services enabling sport programs. This includes training centers, competition systems, and intellectual services. Results identified remarkable achievements coupled with great potential to further develop football in different types of public and private organizations in Nigeria. These include: assimilating football competitions with other cultural and educational activities, providing favorable conditions for employees of all possible organizations to partake and help in managing football programs and events, providing football coaching integrated with counseling for prevention of antisocial conduct, and improving cooperation between football programs and organizations for peace-making and advancement of international relations, tourism, and socio-economic development. Accurate reporting of the sports programs from the media should be encouraged through staff training for better awareness of various events. The systematic integration of these meso-level practices into the balanced development of mass and high-performance football will contribute to international sport success as well as national health, education, and social harmony.

Energy Saving in Handling the Air-Conditioning Latent-Load Using a Liquid Desiccant Air Conditioner: Parametric Experimental Analysis

Reasonable energy saving for dehumidification is feasible with the use of desiccants. Desiccants are able to lower the humidity content in the air irrespective of the dew point temperature. In this paper, a tube bundle liquid desiccant air conditioner was experimentally designed and evaluated using lithium chloride as a desiccant. Several experiments were conducted to evaluate the influence of the inlet parameters on the dehumidifier performance. The results show a reduction in the relative humidity in the range of 17 to 46%, and the change in the humidity ratio was between 1.5 to 4.7 g/kg, depending on the inlet conditions. A water removal rate in the range between 0.54 and 1.67 kg/h was observed. The effects of air relative humidity and the desiccant flow rate on the dehumidifier’s performance were investigated. It was found that the moisture removal rate remarkably increased with increasing desiccant flow rate and air inlet humidity ratio. The dehumidifier effectiveness increased sharply with increasing desiccant flow rate. Also, it was found that the dehumidifier effectiveness slightly decreased with air humidity ratio.

Residential and Care Model for Elderly People Based on “Internet Plus”

China's aging tendency is becoming increasingly severe, which leads to the embarrassing situation of "getting old before getting wealthy". The traditional pension model does not comply with the need of today. Relying on "Internet Plus", it can efficiently integrate information and resources and meet the personalized needs of elderly care. It can reduce the operating cost of community elderly care facilities and lay a technical foundation for providing better services for the elderly. The key for providing help for the elderly in the future is to effectively integrate technology, make good use of technology, and improve the efficiency of elderly care services. The effective integration of traditional home care, community care, intelligent elderly care equipment and medical resources to create the "Internet Plus" community intelligent pension service mode has become the future development trend of aging care. The research method of this paper is to collect literature and conduct theoretical research on community pension firstly. Secondly, the combination of suitable aging design and "Internet Plus" is elaborated through research. Finally, this paper states the current level of intelligent technology in old-age care and looks into the future by understanding multiple levels of "Internet Plus". The development of community intelligent pension mode and content under "Internet Plus" has enormous development potential. In addition to the characteristics and functions of ordinary houses, residential design of endowment housing has higher requirements for comfort and personalization, and the people-oriented is the principle of design.

Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis

This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.

A Recognition Method of Ancient Yi Script Based on Deep Learning

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors

The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.

Harrison’s Stolen: Addressing Aboriginal and Indigenous Islanders Human Rights

According to the United Nations Declaration of Human Rights in 1948, every human being is entitled to rights in life that should be respected by others and protected by the state and community. Such rights are inherent regardless of colour, ethnicity, gender, religion or otherwise, and it is expected that all humans alike have the right to live without discrimination of any sort. However, that has not been the case with Aborigines in Australia. Over a long period of time, the governments of the State and the Territories and the Australian Commonwealth denied the Aboriginal and Indigenous inhabitants of the Torres Strait Islands such rights. Past Australian governments set policies and laws that enabled them to forcefully remove Indigenous children from their parents, which resulted in creating lost generations living the trauma of the loss of cultural identity, alienation and even their own selfhood. Intending to reduce that population of natives and their Aboriginal culture while, on the other hand, assimilate them into mainstream society, they gave themselves the right to remove them from their families with no hope of return. That practice has led to tragic consequences due to the trauma that has affected those children, an experience that is depicted by Jane Harrison in her play Stolen. The drama is the outcome of a six-year project on lost children and which was first performed in 1997 in Melbourne. Five actors only appear on the stage, playing the role of all the different characters, whether the main protagonists or the remaining cast, present or non-present ones as voices. The play outlines the life of five children who have been taken from their parents at an early age, entailing a disastrous negative impact that differs from one to the other. Unknown to each other, what connects between them is being put in a children’s home. The purpose of this paper is to analyse the play’s text in light of the 1948 Declaration of Human Rights, using it as a lens that reflects the atrocities practiced against the Aborigines. It highlights how such practices formed an outrageous violation of those natives’ rights as human beings. Harrison’s dramatic technique in conveying the children’s experiences is through a non-linear structure, fluctuating between past and present that are linked together within each of the five characters, reflecting their suffering and pain to create an emotional link between them and the audience. Her dramatic handling of the issue by fusing tragedy with humour as well as symbolism is a successful technique in revealing the traumatic memory of those children and their present life. The play has made a difference in commencing to address the problem of the right of all children to be with their families, which renders the real meaning of having a home and an identity as people.

Investigation of the Medical Malpractice Tendency of Student Nurses

Introduction: Medical malpractice can be defined as health workers neglecting the expected standard or intentionally not implementing it, doing it wrong and/or incomplete, not being able to implement the accurate practice due to personal or systemic reasons despite desiring to do it correctly and the condition that causes permanent or temporary damage to the patient as a result. If the training periods in which health workers improve their knowledge and skills are passed efficiently, they are expected to have a low rate of error in their professional lives. Aim: Aim of the study is to determine the medical malpractice tendencies of students studying in nursing department. Material and Methods: This descriptive research has been performed with 454 students who study in 3rd and 4th years in the Nursing Department of the Faculty of Health Sciences in a state university in normal and evening education and go out for clinical practice during the 2017-2018 academic year. The sample consisted of 454 students who agreed to participate in the study. Ethics committee approval, the permission of the institution and the verbal consent of the participants were obtained. In collection of data, ‘Personal Information Form’ developed by the researchers and the Malpractice Tendency Scale (SMT) were used. The data were analyzed using SPSS 20 package program. 0.05 was used as the level of significance. Results: The Cronbach’s alpha internal consistency coefficient of the scale was 0.94 and the total mean value of the scale was 211.69 ± 22.14. The mean age of the participants was 22,08 ± 1,852 years; 165 (36,4%) were male and 288 (63,6%) were female. Their mean General Point Average (GPA) was 2.65 ± 0.454 (min 1.03 - max 3.90). Students' average duration of self study per week was 2.89 ± 3.81 (min 0 - max 30) hours. The mean score (80.73) of the 4th year students in the sub-dimension of Drug and Transfusion Applications was significantly higher than the mean score (79.20) of 3rd year students (p < 0.05). The mean score (81.01) of the Drug and Transfusion Applications sub-dimension of those who willingly chose the profession was higher than the mean score (78.88) of those who chose the profession unwillingly. The mean average score (21.48) of Fallings sub-dimension of students who cared for 3 to 4 patients per day was lower than the mean score (22.41) of those who cared for 5 patients and over daily on average (p < 0.05). Conclusion: As a result of this study, it was concluded that malpractice tendency of nursing students was low, and an inverse relationship was found between the duration of education and malpractice tendency.

Impact of Dynamic Capabilities on Knowledge Management Processes

Today, with the development and growth of technology and extreme environmental changes, organizations need to identify opportunities and create creativity and innovation in order to be able to maintain or improve their position in competition with others. In this regard, it is necessary that the resources and assets of the organization are coordinated and reviewed in accordance with the orientation of the strategy. One of the competitive advantages of the present age is knowledge management, which is to equip the organization with the knowledge of the day and disseminate among employees and use it in the development of products and services. Therefore, in the forthcoming research, the impact of dynamic capabilities components (sense, seize, and reconfiguration) has been investigated on knowledge management processes (acquisition, integration and knowledge utilization) in the MAPNA Engineering and Construction Company using a field survey and applied research method. For this purpose, a questionnaire was filled out in the form of 15 questions for dynamic components and 15 questions for measuring knowledge management components and distributed among 46 employees of the knowledge management organization. Validity of the questionnaire was evaluated through content validity and its reliability with Cronbach's coefficient. Pearson correlation test and structural equation technique were used to analyze the data. The results of the research indicate a positive significant correlation between the components of dynamic capabilities and knowledge management.

Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases

Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.

Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth

Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.

Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.