Risk Assessment of Building Information Modelling Adoption in Construction Projects

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis

The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).

Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

ROSA/LSTF Separate Effect Test on Natural Circulation under High Core Power Condition of Pressurized Water Reactor

A separate effect test (SET) simulated natural circulation (NC) under high core power condition of a pressurized water reactor (PWR) utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility). The LSTF test results clarified the relationship between the primary loop mass inventory and the primary loop mass flow rate being dependent on the NC mode at a constant core power of 8% of the volumetric-scaled PWR nominal power. When the core power was 9% or more during reflux condensation, large-amplitude level oscillation in a form of slow fill and dump occurred in steam generator (SG) U-tubes. At 11% core power during reflux condensation, intermittent rise took place in the cladding surface temperature of simulated fuel rods. The RELAP5/MOD3.3 code indicated the insufficient prediction of the SG U-tube liquid level behavior during reflux condensation.

Synthesis, Structure and Properties of NZP/NASICON Structured Materials

The purpose of this work was to synthesize and investigate phase formation, structure and thermophysical properties of the phosphates M0.5+xM'xZr2–x(PO4)3 (M – Cd, Sr, Pb; M' – Mg, Co, Mn). The compounds were synthesized by sol-gel method. The results showed formation of limited solid solutions of NZP/NASICON type. The crystal structures of triple phosphates of the compositions MMg0.5Zr1.5(PO4)3 were refined by the Rietveld method using XRD data. Heat capacity (8–660 K) of the phosphates Pb0.5+xMgxZr2-x(PO4)3 (x = 0, 0.5) was measured, and reversible polymorphic transitions were found at temperatures, close to the room temperature. The results of Rietveld structure refinement showed the polymorphism caused by disordering of lead cations in the cavities of NZP/NASICON structure. Thermal expansion (298−1073 K) of the phosphates MMg0.5Zr1.5(PO4)3 was studied by XRD method, and the compounds were found to belong to middle and low-expanding materials. Thermal diffusivity (298–573 K) of the ceramic samples of phosphates slightly decreased with temperature increasing. As was demonstrated, the studied phosphates are characterized by the better thermophysical characteristics than widespread fire-resistant materials, such as zirconia and etc.

A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.

Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining

In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which cover the variety of figure proportions in both height and girth. 3,000 data have been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from the some states of India to produce the sizing system suitable for clothing manufacture and retailing. The data are used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from the large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.

Creation of GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) Nanoparticles Using Pulse Laser Ablation Method

To date, nanomaterials have received extensive attention over the years because of their wide application. Various nanomaterials such as nanoparticles, nanowire, nanoring, nanostars and other nanostructures have begun to be systematically studied. The preparation of these materials by chemical methods is not only costly, but also has a long cycle and high toxicity. At the same time, preparation of nanoparticles of multi-doped composites has been limited due to the special structure of the materials. In order to prepare multi-doped composites with the same structure as macro-materials and simplify the preparation method, the GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) nanoparticles are prepared by Pulse Laser Ablation (PLA) method. The particle component and structure are systematically investigated by X-ray diffraction (XRD) and Raman spectra, which show that the success of our preparation and the same concentration between nanoparticles (NPs) and target. Morphology of the NPs characterized by Transmission Electron Microscopy (TEM) indicates the circular-shaped particles in preparation. Fluorescence properties are reflected by PL spectra, which demonstrate the best performance in concentration of Ga0.3Co0.3ZnSe0.4. Therefore, all the results suggest that PLA is promising to prepare the multi-NPs since it can modulate performance of NPs.

Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Effects of Repetitive Strain/Stress Injury on the Human Body

This review describes some of the effects of repetitive strain/stress injury (RSI) on the human body especially among computer professionals today that spend extended hours of prolonged sitting in front of a computer day in and day out. The review briefly introduces the main factors that contribute to an increase of RSI among such computer professionals. The review briefly discusses how the human spinal column and knees are mainly affected by the onset of RSI resulting in poor posture. The root and secondary causes and effects of RSI are reviewed. The importance and value of the various breathing techniques are reviewed in an attempt to alleviate some of the effects of RSI. The review concludes with a small sample of suggested office stretches and poses geared towards at reducing RSI follows in this review. Readers will learn about the effects of RSI, as well as ways to cope with it. A better understanding of coping strategies may lead to well-being and a healthier overall lifestyle. Ultimately, the investment of time to connect with oneself with the poses and the power of the breath would promote a well-being that is overall healthier thus resulting in a better ability to cope/manage life stresses.

Statistical Approach to Identify Stress and Biases Impairing Decision-Making in High-Risk Industry

Decision-making occurs several times an hour when working in high risk industry and an erroneous choice might have undesirable outcomes for people and the environment surrounding the industrial plant. Industrial decisions are very often made in a context of acute stress. Time pressure is a crucial stressor leading decision makers sometimes to boost up the decision-making process and if it is not possible then shift to the simplest strategy. We thus found it interesting to update the characterization of the stress factors impairing decision-making at Chinon Nuclear Power Plant (France) in order to optimize decision making contexts and/or associated processes. The investigation was based on the analysis of reports addressing safety events over the last 3 years. Among 93 reports, those explicitly addressing decision-making issues were identified. Characterization of each event was undertaken in terms of three criteria: stressors, biases impairing decision making and weaknesses of the decision-making process. The statistical analysis showed that biases were distributed over 10 possibilities among which the hypothesis confirmation bias was clearly salient. No significant correlation was found between criteria. The analysis indicated that the main stressor was time pressure and highlights an unexpected form of stressor: the trust asymmetry principle of the expert. The analysis led to the conclusion that this stressor impaired decision-making from a psychological angle rather than from a physiological angle: it induces defensive bias of self-esteem, self-protection associated with a bias of confirmation. This leads to the hypothesis that this stressor can intervene in some cases without being detected, and to the hypothesis that other stressors of the same kind might occur without being detected too. Further investigations addressing these hypotheses are considered. The analysis also led to the conclusion that dealing with these issues implied i) decision-making methods being well known to the workers and automated and ii) the decision-making tools being well known and strictly applied. Training was thus adjusted.

Slice Bispectrogram Analysis-Based Classification of Environmental Sounds Using Convolutional Neural Network

Certain systems can function well only if they recognize the sound environment as humans do. In this research, we focus on sound classification by adopting a convolutional neural network and aim to develop a method that automatically classifies various environmental sounds. Although the neural network is a powerful technique, the performance depends on the type of input data. Therefore, we propose an approach via a slice bispectrogram, which is a third-order spectrogram and is a slice version of the amplitude for the short-time bispectrum. This paper explains the slice bispectrogram and discusses the effectiveness of the derived method by evaluating the experimental results using the ESC‑50 sound dataset. As a result, the proposed scheme gives high accuracy and stability. Furthermore, some relationship between the accuracy and non-Gaussianity of sound signals was confirmed.

Seismic Performance of Reinforced Concrete Frame Structure Based on Plastic Rotation

The principal objective of this study is the evaluation of the seismic performance of reinforced concrete frame structures, taking into account of the behavior laws, reflecting the real behavior of materials, using CASTEM2000 software. A finite element model used is based in modified Takeda model with Timoshenko elements for columns and beams. This model is validated on a Vecchio experimental reinforced concrete (RC) frame model. Then, a study focused on the behavior of a RC frame with three-level and three-story in order to visualize the positioning the plastic hinge (plastic rotation), determined from the curvature distribution along the elements. The results obtained show that the beams of the 1st and 2nd level developed a very large plastic rotations, or these rotations exceed the values corresponding to CP (Collapse prevention with cp qCP = 0.02 rad), against those developed at the 3rd level, are between IO and LS (Immediate occupancy and life Safety with qIO = 0.005 rad and rad qLS = 0.01 respectively), so the beams of first and second levels submit a very significant damage.

Evaluations of 3D Concrete Printing Produced in the Environment of United Arab Emirates

3D concrete printing is one of the most innovative and modern techniques in the field of construction that achieved several milestones in that field for the following advantages: saving project’s time, ability to execute complicated shapes, reduce waste and low cost. However, the concept of 3D printing in UAE is relatively new where construction teams, including clients, consultants, and contractors, do not have the required knowledge and experience in the field. This is the most significant obstacle for the construction parties, which make them refrained from using 3D concrete printing compared to conventional concreting methods. This study shows the historical development of the 3D concrete printing, its advantages, and the challenges facing this innovation. Concrete mixes and materials have been proposed and evaluated to select the best combination for successful 3D concrete printing. The main characteristics of the 3D concrete printing in the fresh and hardened states are considered, such as slump test, flow table, compressive strength, tensile, and flexural strengths. There is need to assess the structural stability of the 3D concrete by testing the bond between interlayers of the concrete.  

Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Developing Improvements to Multi-Hazard Risk Assessments

This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.

The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan

In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.

Investigation of the Properties of Epoxy Modified Binders Based on Epoxy Oligomer with Improved Deformation and Strength Properties

The process of modification of ed-20 epoxy resin synthesized by vinyl-containing compounds is considered. It is shown that the introduction of vinyl-containing compounds into the composition based on epoxy resin ED-20 allows adjusting the technological and operational characteristics of the binder. For improvement of the properties of epoxy resin, following modifiers were selected: polyvinylformalethyl, polyvinyl butyral and composition of linear and aromatic amines (Аramine) as a hardener. Now the big range of hardeners of epoxy resins exists that allows varying technological properties of compositions, and also thermophysical and strength indicators. The nature of the aramin type hardener has a significant impact on the spatial parameters of the mesh, glass transition temperature, and strength characteristics. Epoxy composite materials based on ED-20 modified with polyvinyl butyral were obtained and investigated. It is shown that the composition of resins based on derivatives of polyvinyl butyral and ED-20 allows obtaining composite materials with a higher complex of deformation-strength, adhesion and thermal properties, better water resistance, frost resistance, chemical resistance, and impact strength. The magnitude of the effect depends on the chemical structure, temperature and curing time. In the area of concentrations, where the effect of composite synergy is appearing, the values of strength and stiffness significantly exceed the similar parameters of the individual components of the mixture. The polymer-polymer compositions form their class of materials with diverse specific properties that ensure their competitive application. Coatings with high performance under cyclic loading have been obtained based on epoxy oligomers modified with vinyl-containing compounds.

The Effect of X-Ray on Plasma and Erythrocyte Concentration of Zn and Cu in Radiology Staff of Tehran Oil Hospital

Introduction: Some parameters should be considered to investigate the chronic effects of radiation absorption in radiation workers. Trace elements are parameters which small changes in them can cause significant effects on live systems. The role of trace element concentration in human health is significant. These elements play an important role in the developing and functioning of the immune system, cellular respiration, and oxidation processes. Considering the importance and necessity of this issue and few studies, measurements of concentration changes of these elements due to the absorbed dose are important. Purpose: This study aimed to determine the biological effects of occupational dose absorption on plasma and erythrocyte concentration of Zn and Cu in the radiology staff of Tehran Oil Hospital. Material and methods: In this analytical-comparative study, 72 people have entered. 36 people (18 males and 18 females) were selected as radiology staff in the diagnostic and therapeutic departments of Tehran Oil Hospital. And 36 people (18 males and 18 females) were selected as general section staff in the same hospital as a control group. Radiology and control groups’ age and sex were matched. 10 ml of venous blood was taken from all people.  An atomic absorption spectrometer was used to obtain zinc and copper plasma concentrations. Levine test was used to compare these results validity. Results: The mean concentrations of copper and zinc were measured as 0.951 and 0.754 mg/L in the plasma phase and 3.2  and 0.401 mg/L in the RBC phase for the radiology group.  Copper and zinc average concentrations, respectively 0.976 and 0.813 mg/L in the plasma phase and 2.906 and 0.476 mg/L in the RBC phase, were measured for the control group. These elements Concentrations in the plasma phase were significantly different from that of the control group, but the concentrations in the red blood cell phase did not show a significant difference compared to the control group. In comparison, a separate comparison between men and women in the experimental and control groups showed a significant difference in the values of the elements mentioned. With a significant increase in samples, a better justification than the available statistical results can be extracted. Conclusions: Within this study results, chronic occupational probabilistic absorption destructive effects (even within the permitted range) on blood trace element concentration have been confirmed.