Effect of Superplasticizer and NaOH Molarity on Workability, Compressive Strength and Microstructure Properties of Self-Compacting Geopolymer Concrete

The research investigates the effects of super plasticizer and molarity of sodium hydroxide alkaline solution on the workability, microstructure and compressive strength of self compacting geopolymer concrete (SCGC). SCGC is an improved way of concreting execution that does not require compaction and is made by complete elimination of ordinary Portland cement content. The parameters studied were superplasticizer (SP) dosage and molarity of NaOH solution. SCGC were synthesized from low calcium fly ash, activated by combinations of sodium hydroxide and sodium silicate solutions, and by incorporation of superplasticizer for self compactability. The workability properties such as filling ability, passing ability and resistance to segregation were assessed using slump flow, T-50, V-funnel, L-Box and J-ring test methods. It was found that the essential workability requirements for self compactability according to EFNARC were satisfied. Results showed that the workability and compressive strength improved with the increase in superplasticizer dosage. An increase in strength and a decrease in workability of these concrete samples were observed with the increase in molarity of NaOH solution from 8M to 14M. Improvement of interfacial transition zone (ITZ) and micro structure with the increase of SP and increase of concentration from 8M to 12M were also identified.

Effects of Paste Content on Flow Characteristics of SCC Containing Local Natural Pozzolan

Natural pozzolan (NP) is one of the potential prehistoric alternative binders in the construction industry. It has been investigated as cement replacement in ordinary concrete by several researchers for many purposes. Various supplementary cementitious materials (SCMs) such as fly ash, limestone dust and silica fume are widely used in the production of SCC; however, limited studies to address the effect of NP on the properties of SCC are documented. The current research is composed of different SCC paste and concrete mixtures containing different replacement levels of local NP as an alternative SCM. The effect of volume of paste containing different amounts of local NP related to W/B ratio and cement content on SCC fresh properties was assessed. The variations in the fresh properties of SCC paste and concrete represented by slump flow (flowability) and the flow rate were determined and discussed. The results indicated that the flow properties of SCC paste and concrete mixtures, at their optimized superplasticizer dosages, were affected by the binder content of local NP and the total volume fraction of SCC paste.

Some Characteristics of Biodegradable Film Substituted by Yam (Dioscorea alata) Starch from Thailand

Yam starch obtained from the water yam (munlued) by the wet milling process was studied for some physicochemical properties. Yam starch film was prepared by casting using glycerol as a plasticizer. The effect of different glycerol (1.30, 1.65 and 2.00g/100g of filmogenic solution) and starch concentrations (3.30, 3.65 and 4.00g /100g of filmogenic solution) were evaluated on some characteristics of the film. The temperature for obtaining the gelatinized starch solution was 70-80°C and then dried at 45°C for 4 hours. The resulting starch from munlued granular morphology was triangular and the average size of the granule was 26.68 μm. The amylose content by colorimetric method was 26 % and the gelatinize temperature was 70-80°C. The appearance of the film was smooth, transparent, and glossy with average moisture content of 25.96% and thickness of 0.01mm. Puncture deformation and flexibility increased with glycerol content. The starch and glycerol concentration were a significant factor of the yam starch film characteristics. Yam starch film can be described as a biofilm providing many applications and developments with the advantage of biodegradability.

Prediction of Compressive Strength of Self- Compacting Concrete with Fuzzy Logic

The paper presents the potential of fuzzy logic (FL-I) and neural network techniques (ANN-I) for predicting the compressive strength, for SCC mixtures. Six input parameters that is contents of cement, sand, coarse aggregate, fly ash, superplasticizer percentage and water-to-binder ratio and an output parameter i.e. 28- day compressive strength for ANN-I and FL-I are used for modeling. The fuzzy logic model showed better performance than neural network model.

Optimizing Materials Cost and Mechanical Properties of PVC Electrical Cable-s Insulation by Using Mixture Experimental Design Approach

With the development of the Polyvinyl chloride (PVC) products in many applications, the challenge of investigating the raw material composition and reducing the cost have both become more and more important. Considerable research has been done investigating the effect of additives on the PVC products. Most of the PVC composites research investigates only the effect of single/few factors, at a time. This isolated consideration of the input factors does not take in consideration the interaction effect of the different factors. This paper implements a mixture experimental design approach to find out a cost-effective PVC composition for the production of electrical-insulation cables considering the ASTM Designation (D) 6096. The results analysis showed that a minimum cost can be achieved through using 20% virgin PVC, 18.75% recycled PVC, 43.75% CaCO3 with participle size 10 microns, 14% DOP plasticizer, and 3.5% CPW plasticizer. For maximum UTS the compound should consist of: 17.5% DOP, 62.5% virgin PVC, and 20.0% CaCO3 of particle size 5 microns. Finally, for the highest ductility the compound should be made of 35% virgin PVC, 20% CaCO3 of particle size 5 microns, and 45.0% DOP plasticizer.

Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks

The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.

An Investigation of the Effect of the Different Mix Constituents on Concrete Electric Resistivity

Steel corrosion in concrete is considered as a main engineering problems for many countries and lots of expenses has been paid for their repair and maintenance annually. This problem may occur in all engineering structures whether in coastal and offshore or other areas. Hence, concrete structures should be able to withstand corrosion factors existing in water or soil. Reinforcing steel corrosion enhancement can be measured by use of concrete electrical resistance; and maintaining high electric resistivity in concrete is necessary for steel corrosion prevention. Lots of studies devoted to different aspects of the subjects worldwide. In this paper, an evaluation of the effects of W/C ratio, cementitious materials, and percent increase in silica fume were investigated on electric resistivity of high strength concrete. To do that, sixteen mix design with one aggregate grading was planned. Five of them had varying amount of W/C ratio and other eleven mixes was prepared with constant W/C ratio but different amount of cementitious materials. Silica fume and super plasticizer were used with different proportions in all specimens. Specimens were tested after moist curing for 28 days. A total of 80 cube specimens (50 mm) were tested for concrete electrical resistance. Results show that concrete electric resistivity can be increased with increasing amount of cementitious materials and silica fume.

Packing Theory for Natural and Crushed Aggregate to Obtain the Best Mix of Aggregate: Research and Development

Concrete performance is strongly affected by the particle packing degree since it determines the distribution of the cementitious component and the interaction of mineral particles. By using packing theory designers will be able to select optimal aggregate materials for preparing concrete with low cement content, which is beneficial from the point of cost. Optimum particle packing implies minimizing porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles, taking also the rheology of the concrete into consideration. For reaching good fluidity superplasticizers are required. The results from pilot tests at Luleå University of Technology (LTU) show various forms of the proposed theoretical models, and the empirical approach taken in the study seems to provide a safer basis for developing new, improved packing models.