Forecasting the Sea Level Change in Strait of Hormuz

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Evaluation of Water Quality for the Kurtbogazi Dam Outlet and the Streams Feeding the Dam in Ankara, Turkey

Kurtbogazi Dam has gained special meaning for Ankara, Turkey for the last decade due to the rapid depletion of nearby resources of drinking water. In this study, the results of the analyses of Kurtbogazi Dam outlet water and the rivers flowing into the Kurtbogazi Dam were discussed for the period of last five years between 2008 and 2012. Some physical and chemical properties (pH, temperature, biochemical oxygen demand (BOD5), nitrate, phosphate and chlorine) of these water resources were evaluated. They were classified according to the Council Directive (75/440/EEC). Moreover, the properties of these surface waters were assessed to determine the quality of water for drinking and irrigation purposes using Piper, US Salinity Laboratory and Wilcox diagrams. The results showed that all the water resources are acceptable level as surface water except for Pazar Stream in terms of ortho-phosphate and BOD5 concentration for 2008.

Innovative Methods of Improving Train Formation in Freight Transport

The paper is focused on the operational model for transport the single wagon consignments on railway network by using two different models of train formation. The paper gives an overview of possibilities of improving the quality of transport services. Paper deals with two models used in problematic of train formatting - time continuously and time discrete. By applying these models in practice, the transport company can guarantee a higher quality of service and expect increasing of transport performance. The models are also applicable into others transport networks. The models supplement a theoretical problem of train formation by new ways of looking to affecting the organization of wagon flows.

The Effects of Applying Linguistic Principles and Teaching Techniques in Teaching English at Secondary School in Thailand

The ultimate purpose of this investigation was to determine the teachers’ opinions as well as students’ opinions towards the Adapted English Lessons. The subjects of the study were 5 Thai teachers, who teach English, and 85 Grade 10 mixed-ability students at Triamudom Suksa Pattanakarn Ratchada School, Bangkok, Thailand. The research instruments included questionnaires and the informal interview. The data from the research instruments was collected and analyzed concerning linguistic principles of minimal pair and articulatory phonetics as well as teaching techniques of mimicry-memorization; vocabulary substitution drills, language pattern drills, reading comprehension exercise, practicing listening, speaking and writing skill and communicative activities; informal talk and free writing. The data was statistically compiled according to an arithmetic percentage. The results showed that the teachers and students have very highly positive opinions towards adapting linguistic principles for teaching and learning phonological accuracy. Teaching techniques provided in the Adapted English Lessons can be used efficiently in the classroom. The teachers and students have positive opinions towards them too.

Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven

In this study, we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity ε and the varying of the Richardson number Ri on the variation of average Nusselt number Nu. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless Governing Equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to 10. The Rayleigh number is fixed to Ra=104 and the Prandtl number is maintained constant Pr=0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number Ri and emissivity ε affect the average Nusselt number.

Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan

In present study, a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections, the average of the ooids was ranged between 90%-80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine, and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The presence of infrastructures in addition to the presence of massive quantities of iron ore would make exploitation economically.

Dynamic Power Reduction in Sequential Circuits Using Look Ahead Clock Gating Technique

In this paper, a novel Linear Feedback Shift Register (LFSR) with Look Ahead Clock Gating (LACG) technique is presented to reduce the power consumption in modern processors and System-on-Chip. Clock gating is a predominant technique used to reduce unwanted switching of clock signals. Several clock gating techniques to reduce the dynamic power have been developed, of which LACG is predominant. LACG computes the clock enabling signals of each flip-flop (FF) one cycle ahead of time, based on the present cycle data of the flip-flops on which it depends. It overcomes the timing problems in the existing clock gating methods like datadriven clock gating and Auto-Gated flip-flops (AGFF) by allotting a full clock cycle for the determination of the clock enabling signals. Further to reduce the power consumption in LACG technique, FFs can be grouped so that they share a common clock enabling signal. Simulation results show that the novel grouped LFSR with LACG achieves 15.03% power savings than conventional LFSR with LACG and 44.87% than data-driven clock gating.

The Digital Microscopy in Organ Transplantation: Ergonomics of the Tele-Pathological Evaluation of Renal, Liver and Pancreatic Grafts

Introduction: The process to build a better safety culture, methods of error analysis, and preventive measures, starts with an understanding of the effects when human factors engineering refer to remote microscopic diagnosis in surgery and specially in organ transplantation for the remote evaluation of the grafts. It has been estimated that even in well-organized transplant systems an average of 8% to 14% of the grafts (G) that arrive at the recipient hospitals may be considered as diseased, injured, damaged or improper for transplantation. Digital microscopy adds information on a microscopic level about the grafts in Organ Transplant (OT), and may lead to a change in their management. Such a method will reduce the possibility that a diseased G, will arrive at the recipient hospital for implantation. Aim: Ergonomics of Digital Microscopy (DM) based on virtual slides, on Telemedicine Systems (TS) for Tele-Pathological (TPE) evaluation of the grafts (G) in organ transplantation (OT). Material and Methods: By experimental simulation, the ergonomics of DM for microscopic TPE of Renal Graft (RG), Liver Graft (LG) and Pancreatic Graft (PG) tissues is analyzed. In fact, this corresponded to the ergonomics of digital microscopy for TPE in OT by applying Virtual Slide (VS) system for graft tissue image capture, for remote diagnoses of possible microscopic inflammatory and/or neoplastic lesions. Experimentation included: a. Development of an OTE-TS similar Experimental Telemedicine System (Exp.-TS), b. Simulation of the integration of TS with the VS based microscopic TPE of RG, LG and PG applying DM. Simulation of the DM based TPE was performed by 2 specialists on a total of 238 human Renal Graft (RG), 172 Liver Graft (LG) and 108 Pancreatic Graft (PG) tissues digital microscopic images for inflammatory and neoplastic lesions on four electronic spaces of the four used TS. Results: Statistical analysis of specialist‘s answers about the ability to diagnose accurately the diseased RG, LG and PG tissues on the electronic space among four TS (A,B,C,D) showed that DM on TS for TPE in OT is elaborated perfectly on the ES of a Desktop, followed by the ES of the applied Exp.-TS. Tablet and Mobile-Phone ES seem significantly risky for the application of DM in OT (p

Service Blueprint for Improving Clinical Guideline Adherence via Mobile Health Technology

Background: To improve the delivery of paediatric healthcare in low resource settings, Community Health Workers (CHW) have been provided with a paper-based set of protocols known as Community Case Management (CCM). Yet research has shown that CHW adherence to CCM guidelines is poor, ultimately impacting health service delivery. Digitising the CCM guidelines via mobile technology is argued in extant literature to improve CHW adherence. However, little research exist which outlines how (a) this process can be digitised and (b) adherence could be improved as a result. Aim: To explore how an electronic mobile version of CCM (eCCM) can overcome issues associated with the paper-based CCM protocol (inadequate adherence to guidelines) vis-à-vis service blueprinting. This service blueprint will outline how (a) the CCM process can be digitised using mobile Clinical Decision Support Systems software to support clinical decision-making and (b) adherence can be improved as a result. Method: Development of a single service blueprint for a standalone application which visually depicts the service processes (eCCM) when supporting the CHWs, using an application known as Supporting LIFE (SL eCCM app) as an exemplar. Results: A service blueprint is developed which illustrates how the SL eCCM app can be utilised by CHWs to assist with the delivery of healthcare services to children. Leveraging smartphone technologies can (a) provide CHWs with just-in-time data to assist with their decision making at the point-of-care and (b) improve CHW adherence to CCM guidelines. Conclusions: The development of the eCCM opens up opportunities for the CHWs to leverage the inherent benefit of mobile devices to assist them with health service delivery in rural settings. To ensure that benefits are achieved, it is imperative to comprehend the functionality and form of the eCCM service process. By creating such a service blueprint for an eCCM approach, CHWs are provided with a clear picture regarding the role of the eCCM solution, often resulting in buy-in from the end-users.

Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keeps the shrouds in the temperature range from -150°C to +150°C. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Management of Cultural Heritage: Bologna Gates

A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.

Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation

Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.

Ecosystem Post-Wildfire Effects of Thasos Island

Fires is one of the main types of disturbances that shape ecosystems in the Mediterranean region. However nowadays, climate alterations towards higher temperatures result on increased levels of fire intensity, frequency and spread as well as difficulties for natural regeneration to occur. Thasos Island is one of the Greek islands that has experienced those problems. Since 1984, a series of wildfires led to the reduction of forest cover from 61.6% to almost 20%. The negative impacts were devastating in many different aspects for the island. The absence of plant cover, post-wildfire precipitation and steep slopes were the major factors that induced severe soil erosion and intense floods. That also resulted to serious economic problems to the local communities and the inability of the burnt areas to regenerate naturally. Despite the substantial amount of published work regarding Thasos wildfires, there is no information related to post-wildfire effects on factors such as soil erosion. More research related to post-fire effects should help to an overall assessment of the negative impacts of wildfires on land degradation through processes such as soil erosion and flooding.

A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, The aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infra-red video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Quality Approaches for Mass-Produced Fashion: A Study in Malaysian Garment Manufacturing

The garment manufacturing industry involves sequential processes that are subjected to uncontrollable variations. The industry depends on the skill of labour in handling the varieties of fabrics and accessories, machines, as well as complicated sewing operation. Due to these reasons, garment manufacturers have created systems to monitor and to control the quality of the products on a regular basis by conducting quality approaches to minimize variation. With that, the aim of this research has been to ascertain the quality approaches deployed by Malaysian garment manufacturers in three key areas - quality systems and tools; quality control and types of inspection; as well as sampling procedures chosen for garment inspection. Besides, the focus of this research was to distinguish the quality approaches adopted by companies that supplied finished garments to both domestic and international markets. Feedback from each company representative has been obtained via online survey, which comprised of five sections and 44 questions on the organizational profile and the quality approaches employed in the garment industry. As a result, the response rate was 31%. The results revealed that almost all companies have established their own mechanism of process control by conducting a series of quality inspections for daily production, either it was formally set up or otherwise. In addition, quality inspection has been the predominant quality control activity in the garment manufacturing, while the level of complexity of these activities was substantially dictated by the customers. Moreover, AQL-based sampling was utilized by companies dealing with exports, whilst almost all the companies that only concentrated on the domestic market were comfortable using their own sampling procedures for garment inspection. Hence, this research has provided insights into the implementation of a number of quality approaches that were perceived as important and useful in the garment manufacturing sector, which is truly labour-intensive.

Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth

South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.

Systolic Blood Pressure and Its Determinants: Study in a Population Attending Pharmacies in a Portuguese Coastal City

Hypertension is a common condition causing cardio and cerebrovascular complications. Portugal has one of the highest mortality rates from stroke and a high prevalence of hypertension. Systolic Blood Pressure (SBP) is an important risk factor for cardiovascular events (myocardial infarction and stroke) and premature mortality, particularly in the elderly population. The present study aims to estimate the prevalence of hypertension in a Portuguese population living in a coastal city and to identify some of its determinants (namely gender, age, the body mass index and physical activity frequency). A total of 91 adults who attended three pharmacies of a coastal city in the center of Portugal, between May and August of 2013 were evaluated. Attendants who reported to have diabetes or taking antihypertensive drugs in the 2 previous weeks were excluded from the study. Sociodemographic factors, BMI, habits of exercise and BP were assessed. Hypertension was defined as blood pressure ≥140/90 mmHg. The majority of the studied population was constituted by women (75.8%), with a mean age of 54.2±1.6 years old, married or living in civil union and that had completed secondary school or had higher education (40%). They presented a mean BMI of 26.2±4.76 Kg/m2., and were sedentary. The mean BP was 127.0±17.77mmHg- 74.69 ± 9.53. In this population we found 4.3% of people with hypertension and 16.1% with normal high blood pressure. Men exhibit a tendency to present higher systolic blood pressure values than women. Of all the factors considered, SBP values also tended to be higher with age and higher BMI values. Despite the fact that the mean values of SBP did not present values higher than 140 mmHg we must be concerned because the studied population is undiagnosed for hypertension. Although this is a preliminary study, it might be a prelude to the upcoming research about the underlying factors responsible for the occurrence of SBP.

The Mediating Effect of MSMEs Export Performance between Technological Advancement Capabilities and Business Performance

The aim of this study is to empirically investigate the mediating impact of export performance (EP) between technological advancement capabilities and business performance (BP) of Malaysian manufacturing micro, small and medium sized enterprises (MSME’s). Firm’s technological advancement resources are hypothesized as a platform to enhance both exports and BP of manufacturing MSMEs in Malaysia. This study is twofold, primary it has investigated that technological advancement capabilities helps to appreciates main performance measures noted in terms of EP and Secondly, it investigates that how efficiently and effectively technological advancement capabilities can contribute in overall Malaysian MSME’s BP. Smart PLS-3 statistical software is used to know the association between technological advancement capabilities, MSME’s EP and BP. In this study, the data was composed from Malaysian manufacturing MSME’s in east coast industrial zones known as the manufacturing hub of MSMEs. Seven hundred and fifty (750) questionnaires were distributed, but only 148 usable questionnaires are returned. The finding of this study indicated that technological advancement capabilities helps to strengthen the export in term of time and cost efficient and it plays a significant role in appreciating their BP. This study is helpful for small and medium enterprise owners who intend to expand their business overseas and though smart technological advancement resources they can achieve their business competitiveness and excellence both at local and international markets.

Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique

Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production.