Potential of Salvia sclarea L. for Phytoremediation of Soils Contaminated with Heavy Metals

A field study was conducted to evaluate the efficacy of Salvia sclarea L. for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The content of heavy metals in different parts of Salvia sclarea L. (roots, stems, leaves and inflorescences) was determined by ICP. The essential oil of the Salvia sclarea L. was obtained by steam distillation in laboratory conditions and was analyzed for heavy metals and its chemical composition was determined. Salvia sclarea L. is a plant which is tolerant to heavy metals and can be grown on contaminated soils. Based on the obtained results and using the most common criteria, Salvia sclarea L. can be classified as Pb hyperaccumulator and Cd and Zn accumulators, therefore, this plant has suitable potential for the phytoremediation of heavy metal contaminated soils. Favorable is also the fact that heavy metals do not influence the development of the Salvia sclarea L., as well as on the quality and quantity of the essential oil. For clary sage oil obtained from the processing of clary sage grown on highly contaminated soils, its key odour-determining ingredients meet the quality requirements of the European Pharmacopoeia and BS ISO 7609 regarding Bulgarian clary sage oil and/or have values that are close to the limits of these standards. The possibility of further industrial processing will make Salvia sclarea L. an economically interesting crop for farmers of phytoextraction technology.

Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90

A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).

Exploring the Importance of Different Product Cues on the Selection for Chocolate from the Consumer Perspective

The purpose of this paper is to deepen the understanding of the product cues that influence purchase decision for a specific product category – chocolate, and to identify demographic differences in the buying behavior. ANOVA was employed for analyzing the significance level for nine product cues, and the survey showed statistically significant differences among different age and gender groups, and between respondents with different levels of education. From the theoretical perspective, the study adds to the existing knowledge by contributing with the research results from the new environment (Southeast Europe, Macedonia), which has been neglected so far. Establishing the level of significance for the product cues that affect buying behavior in the chocolate consumption context might help managers to improve marketing decision-making, and better meet consumer needs through identifying opportunities for packaging innovations and/or personalization toward different target groups.

Experimental and Numerical Analysis of a Historical Bell Tower

In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.

Modal Analysis for Study of Minor Historical Architecture

Cultural heritage conservation is a challenge for contemporary society. In recent decades, significant resources have been allocated for the conservation and restoration of architectural heritage. Historical buildings were restored, protected and reinforced with the intent to limit the risks of degradation or loss, due to phenomena of structural damage and to external factors such as differential settlements, earthquake effects, etc. The wide diffusion of historic masonry constructions in Italy, Europe and the Mediterranean area requires reliable tools for the evaluation of their structural safety. In this paper is presented a free modal analysis performed on a minor historical architecture located in the village of Bagno Grande, near the city of L’Aquila in Italy. The location is characterized by a complex urban context, seriously damaged by the earthquake of 2009. The aim of this work is to check the structural behavior of a masonry building characterized by several boundary conditions imposed by adjacent buildings and infrastructural facilities.

Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Recommendations as a Key Aspect for Online Learning Personalization: Perceptions of Teachers and Students

Higher education students are increasingly enrolling in online courses, they are, at the same time, generating data about their learning process in the courses. Data collected in those technology enhanced learning spaces can be used to identify patterns and therefore, offer recommendations/personalized courses to future online students. Moreover, recommendations are considered key aspects for personalization in online learning. Taking into account the above mentioned context, the aim of this paper is to explore the perception of higher education students and teachers towards receiving recommendations in online courses. The study was carried out with 322 students and 10 teachers from two different faculties (Engineering and Education) from Mondragon University. Online questionnaires and face to face interviews were used to gather data from the participants. Results from the questionnaires show that most of the students would like to receive recommendations in their online courses as a guide in their learning process. Findings from the interviews also show that teachers see recommendations useful for their students’ learning process. However, teachers believe that specific pedagogical training is required. Conclusions can also be drawn as regards the importance of personalization in technology enhanced learning. These findings have significant implications for those who train online teachers due to the fact that pedagogy should be the driven force and further training on the topic could be required. Therefore, further research is needed to better understand the impact of recommendations on online students’ learning process and draw some conclusion on pedagogical concerns.

Numerical and Experimental Investigations of Cantilever Rectangular Plate Structure on Subsonic Flutter

In this study, flutter characteristics of cantilever rectangular plate structure under incompressible flow regime are investigated by comparing the results of commercial flutter analysis program ZAERO© with wind tunnel tests conducted in Ankara Wind Tunnel (ART). A rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is used for both numerical and experimental investigations. Analysis and test results are very compatible with each other. A comparison between two different solution methods (g and k-method) of ZAERO© is also done. It is seen that, k-method gives closer result than the other one. However, g-method results are on conservative side and it is better to use conservative results namely g-method results. Even if the modal analysis results are used for the flutter analysis for this simple structure, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results for more complicated structures.

On the Optimality of Blocked Main Effects Plans

In this article, experimental situations are considered where a main effects plan is to be used to study m two-level factors using n runs which are partitioned into b blocks, not necessarily of same size. Assuming the block sizes to be even for all blocks, for the case n ≡ 2 (mod 4), optimal designs are obtained with respect to type 1 and type 2 optimality criteria in the class of designs providing estimation of all main effects orthogonal to the block effects. In practice, such orthogonal estimation of main effects is often a desirable condition. In the wider class of all available m two level even sized blocked main effects plans, where the factors do not occur at high and low levels equally often in each block, E-optimal designs are also characterized. Simple construction methods based on Hadamard matrices and Kronecker product for these optimal designs are presented.

Research on the Problems of Housing Prices in Qingdao from a Macro Perspective

Qingdao is a seaside city. Taking into account the characteristics of Qingdao, this article established a multiple linear regression model to analyze the impact of macroeconomic factors on housing prices. We used stepwise regression method to make multiple linear regression analysis, and made statistical analysis of F test values and T test values. According to the analysis results, the model is continuously optimized. Finally, this article obtained the multiple linear regression equation and the influencing factors, and the reliability of the model was verified by F test and T test.

Enhancing Supply Chain Agility by Deploying Competence Management and the Supply Chain Operations Model

Currently, business environment is characterized by pressure caused by stiff competition, constant changes (e.g., product/ technological innovations, decreasing product lifecycles, and product proliferation), and a high level of market uncertainty band unpredictability. The agility of the Supply Chain Management (SCM) is clearly identified as a key factor for success and a strategic essential lever. This paper explores the impact of deploying competence management and Supply Chain Operations Reference (SCOR) model on firm performance. Our approach is based on a systemic view by considering the SCOR reference model as the heart of competence management system.

A Cost-Effective Design and Analysis of Full Bridge LLC Resonant Converter

LLC (Inductor-inductor-capacitor) resonant converter has lots of advantages over other type of resonant converters which include high efficiency, more reliable and have high power density. This paper presents the design and analysis of a full bridge LLC resonant converter. In addition to the operational principle, the ZVS and ZCS conditions are also explained with the DC characteristics. Simulation of the LLC resonant converter is performed in MATLAB/ Simulink and the practical prototype setup is analyzed in Proteus software. The result is verified through analysis and design of a low cost, 200 watt prototype converter.

(λ,μ)-fuzzy Subrings and (λ,μ)-fuzzy Quotient Subrings with Operators

In this paper, we extend the fuzzy subrings with operators to the (λ, μ)-fuzzy subrings with operators. And the concepts of the (λ, μ)-fuzzy subring with operators and (λ, μ)-fuzzy quotient ring with operators are gived, while their elementary properties are discussed.

A Survey on Facial Feature Points Detection Techniques and Approaches

Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms.

Single Phase 13-Level D-STATCOM Inverter with Distributed System

The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.

Smart Trust Management for Vehicular Networks

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Risk Assessment of Lead in Meat from Different Environments of Egypt

Lead is among the heavy metals and it is one of the highly toxic metals, recognized in most countries. This metal accumulates in animal organs as liver and kidney. The present investigation provides the concentrations of lead in cow's meat and different animal organs collected from three Egyptian environments. The results revealed that lead levels in muscle, liver, kidney, spleen and heart in industrial areas were higher than those detected in the same organs of other two areas (heavy traffic and rural), which recorded mean values of 3.0091, 1.7070, 1.8609, 0.6401 and 0.5332 mg/kg, respectively, followed by traffic areas, 2.9166, 1.4443, 1.6967, 0.4042 and 0.4103 mg/kg, respectively. The corresponding values of rural areas were 1.8895, 0.9550, 0.9117, 0.3215 and 0.2856 mg/kg, in the same order. It could be recommended that monitoring and evaluation of lead levels in meat at regular intervals are very important.

Constitutive Modeling of Different Types of Concrete under Uniaxial Compression

The cost of experiments on different types of concrete has raised the demand for prediction of their behavior with numerical analysis. In this research, an advanced numerical model has been presented to predict the complete elastic-plastic behavior of polymer concrete (PC), high-strength concrete (HSC), high performance concrete (HPC) along with different steel fiber contents under uniaxial compression. The accuracy of the numerical response was satisfactory as compared to other conventional simple models such as Mohr-Coulomb and Drucker-Prager. In order to predict the complete elastic-plastic behavior of specimens including softening behavior, disturbed state concept (DSC) was implemented by nonlinear finite element analysis (NFEA) and hierarchical single surface (HISS) failure criterion, which is a failure surface without any singularity.

The Effect of Peer Support to Interpersonal Problem Solving Tendencies and Skills in Nursing Students

This study has been conducted as a supplementary and relationship seeking study with the purpose of measuring the tendency and success of support among peers amid nursing students studying at university in solving interpersonal problems. The population of the study (N:279) is comprised of nursing students who are studying at one state and one private university in the province of Konya, while its sample is comprised of 231 nursing students who agreed to take part in the study voluntarily. As a result of this study, it has been determined that the peer support and interpersonal problem solving characteristics among students were at medium levels and that the interpersonal problem solving skills of students studying in the third year were higher than those of first and second year students. While the interpersonal problem solving characteristics of students who are aged 20 and over were found to be higher, no difference could be determined in terms of the interpersonal problem solving skills and tendencies among students, based on their gender and where they reside. A positive – to a medium degree – and significant relationship was determined between peer support and interpersonal problem solving skills, and it is possible to say that as peer support increases, so do the skills and tendencies to solve problems.

Islanding Detection Techniques for Synchronous Distributed Generation

The issue of unintentional islanding detection of grid connected synchronous distributed generation (SDG) remains the most challenging task faced by the distributed generation (DG) industry as SDG is highly capable of prolonging an island. This paper gives an insight of anti-islanding detection techniques mainly applied for SDG. Different techniques conclude that it is challenging to point out a generic method for a distinct purpose as the application of particular practice depends on nature of the end use and system dependent elements. Also, the setup and operational cost affect the selection of anti-islanding technique to achieve minimal compromising between cost and system quality. A test bench is created in the MATLAB/Simulink® to demonstrate the results of a 33 kV system. The results are highly satisfactory and they are according to the current practices.