Factors Influencing Students' Self-Concept among Malaysian Students

This paper examines the students’ self-concept among 16- and 17- year- old adolescents in Malaysian secondary schools. Previous studies have shown that positive self-concept played an important role in student adjustment and academic performance during schooling. This study attempts to investigate the factors influencing students’ perceptions toward their own self-concept. A total of 1168 students participated in the survey. This study utilized the CoPs (UM) instrument to measure self-concept. Principal Component Analysis (PCA) revealed three factors: academic selfconcept, physical self-concept and social self-concept. This study confirmed that students perceived certain internal context factors, and revealed that external context factor also have an impact on their self-concept.

Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

The Evaluation and the Comparison of the Effect of Without Engine Power and Power Mechanical Systems on Rice Weed

In order to study the influence of different methods of controlling weeds such as mechanical weeding and mechanical weeder efficiency analysis in mechanical cultivation conditions, in farming year of 2011 an experiment was done in a farm in coupling and development of technology center in Haraz,Iran. The treatments consisted of (I) control treatment: where no weeding was done, (II) use of mechanical weeding without engine and (III) power mechanical weeding. Results showed that experimental treatments had significantly different effects (p=0.05) on yield traits and number of filled grains per panicle, while treatments had the significant effects on grain weight and dry weight of weeds in the first, second and third weeding methods at 1% of confidence level. Treatment (II) had its most significant effect on number of filled grains per panicle and yield performance standpoint, which was 3705.97 kg ha-1 in its highest peak. Treatment (III) was ranked as second influential with 3559.8 kg ha-1. In addition, under (I) treatments, 2364.73 kg ha-1 of yield produced. The minimum dry weights of weeds in all weeding methods were related to the treatment (II), (III) and (I), respectively. The correlation coefficient analysis showed that total yield had a significant positive correlation with the panicle grain yield per plant (r= 0.55*) and the number of grains per panicle-1 (r= 0.57*) and the number of filled grains (r= 0.63*). Total rice yield also had negative correlation of r= -0. 64* with weed dry weight at second weed sampling time (17 DAT). The weed dry weight at third and fourth sampling times (24 and 40 DAT) had negative correlations of -0.65** and r=-0.61* with rice yield, respectively.

Reducing Sugar Production from Durian Peel by Hydrochloric Acid Hydrolysis

Agricultural waste is mainly composed of cellulose and hemicelluloses which can be converted to sugars. The inexpensive reducing sugar from durian peel was obtained by hydrolysis with HCl concentration at 0.5-2.0% (v/v). The hydrolysis range of time was for 15-60 min when the mixture was autoclaved at 121 °C. The result showed that acid hydrolysis efficiency (AHE) highest to 80.99% at condition is 2.0%concentration for 15 min. Reducing sugar highest to 56.07 g/litre at condition is 2.0% concentration for 45min. Total sugar highest to 59.83 g/litre at condition is 2.0%concentration for 45min, which was not significant (p < 0.05) with condition 2.0% concentration for 30 min and 1.5 % concentration for 45 and 60 min. The increase in concentration increased AHE, reducing sugar and total sugar. The hydrolysis time had no effect on AHE, reducing sugar and total sugar. The maximum reducing sugars of each concentration were at hydrolysis time 45 min .The hydrolysated were analysis by HPLC, the results revealed that the principle of sugar were glucose, fructose and xylose.

Versioning OWL Ontologies using Temporal Tags

Ontologies play an important role in semantic web applications and are often developed by different groups and continues to evolve over time. The knowledge in ontologies changes very rapidly that make the applications outdated if they continue to use old versions or unstable if they jump to new versions. Temporal frames using frame versioning and slot versioning are used to take care of dynamic nature of the ontologies. The paper proposes new tags and restructured OWL format enabling the applications to work with the old or new version of ontologies. Gene Ontology, a very dynamic ontology, has been used as a case study to explain the OWL Ontology with Temporal Tags.

Clustering Unstructured Text Documents Using Fading Function

Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.

Estimation of the Bit Side Force by Using Artificial Neural Network

Horizontal wells are proven to be better producers because they can be extended for a long distance in the pay zone. Engineers have the technical means to forecast the well productivity for a given horizontal length. However, experiences have shown that the actual production rate is often significantly less than that of forecasted. It is a difficult task, if not impossible to identify the real reason why a horizontal well is not producing what was forecasted. Often the source of problem lies in the drilling of horizontal section such as permeability reduction in the pay zone due to mud invasion or snaky well patterns created during drilling. Although drillers aim to drill a constant inclination hole in the pay zone, the more frequent outcome is a sinusoidal wellbore trajectory. The two factors, which play an important role in wellbore tortuosity, are the inclination and side force at bit. A constant inclination horizontal well can only be drilled if the bit face is maintained perpendicular to longitudinal axis of bottom hole assembly (BHA) while keeping the side force nil at the bit. This approach assumes that there exists no formation force at bit. Hence, an appropriate BHA can be designed if bit side force and bit tilt are determined accurately. The Artificial Neural Network (ANN) is superior to existing analytical techniques. In this study, the neural networks have been employed as a general approximation tool for estimation of the bit side forces. A number of samples are analyzed with ANN for parameters of bit side force and the results are compared with exact analysis. Back Propagation Neural network (BPN) is used to approximation of bit side forces. Resultant low relative error value of the test indicates the usability of the BPN in this area.

The Development of Smart School Condition Assessment Based on Condition Survey Protocol (CSP) 1 Matrix: A Literature Review

Building inspection is one of the key components of building maintenance. The primary purpose of performing a building inspection is to evaluate the building-s condition. Without inspection, it is difficult to determine a built asset-s current condition, so failure to inspect can contribute to the asset-s future failure. Traditionally, a longhand survey description has been widely used for property condition reports. Surveys that employ ratings instead of descriptions are gaining wide acceptance in the industry because they cater to the need for numerical analysis output. These kinds of surveys are also in keeping with the new RICS HomeBuyer Report 2009. In this paper, we propose a new assessment method, derived from the current rating systems, for assessing the specifically smart school building-s condition and rating the seriousness of each defect identified. These two assessment criteria are then multiplied to find the building-s score, which we called the Condition Survey Protocol (CSP) 1 Matrix. Instead of a longhand description of a building-s defects, this matrix requires concise explanations about the defects identified, thus saving on-site time during a smart school building inspection. The full score is used to give the building an overall rating: Good, Fair or Dilapidated.

Using Linear Quadratic Gaussian Optimal Control for Lateral Motion of Aircraft

The purpose of this paper is to provide a practical example to the Linear Quadratic Gaussian (LQG) controller. This method includes a description and some discussion of the discrete Kalman state estimator. One aspect of this optimality is that the estimator incorporates all information that can be provided to it. It processes all available measurements, regardless of their precision, to estimate the current value of the variables of interest, with use of knowledge of the system and measurement device dynamics, the statistical description of the system noises, measurement errors, and uncertainty in the dynamics models. Since the time of its introduction, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. For example, to determine the velocity of an aircraft or sideslip angle, one could use a Doppler radar, the velocity indications of an inertial navigation system, or the relative wind information in the air data system. Rather than ignore any of these outputs, a Kalman filter could be built to combine all of this data and knowledge of the various systems- dynamics to generate an overall best estimate of velocity and sideslip angle.

Electricity Power Planning: the Role of Wind Energy

Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.

A Study of the Variables in the Optimisation of a Platinum Precipitation Process

This study investigated possible ways to improve the efficiency of the platinum precipitation process using ammonium chloride by reducing the platinum content reporting to the effluent. The ore treated consist of five platinum group metals namely, ruthenium, rhodium, iridium, platinum, palladium and a precious metal gold. Gold, ruthenium, rhodium and iridium were extracted prior the platinum precipitation process. Temperature, reducing agent, flow rate and potential difference were the variables controlled to determine the operation conditions for optimum platinum precipitation efficiency. Hydrogen peroxide was added as the oxidizing agent at the temperature of 85-90oC and potential difference of 700-850mV was the variable used to check the oxidizing state of platinum. The platinum was further purified at temperature between 60-65oC, potential difference above 700 mV, ammonium chloride of 200 l, and at these conditions the platinum content reporting to the effluent was reduced to less than 300ppm, resulting in optimum platinum precipitation efficiency and purity of 99.9%.

Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework

This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.

Comparative Analysis of Farm Enterprises Performance in Two Agro-Ecological Feuding Zone of Nigeria

The two agro-ecological zones became the focus of the study because of violent nature of the incessant conflict in the zones. The available register of farmers association was the sampling frame work where ten percent (61) farmers per state were randomly sampled. Data were collected and analysed using z-test. The research findings revealed tree crops and grains production enterprises ranked higher in Osun (rain fed zones) and Taraba states (savannah zones) respectively. Osun state entrepreneur felt the effect of the conflict on their enterprises more than Tarba state. The reasons adduced for severity of the conflict on enterprises are majority (77.0%) migrated and (75.5%) of them were not allowed to enter their farms during and when conflict deescalated unlike situation in Taraba state. The different in enterprises production level between the two agroecological zone was statistically significant at p

Efficient Feature-Based Registration for CT-M R Images Based on NSCT and PSO

Feature-based registration is an effective technique for clinical use, because it can greatly reduce computational costs. However, this technique, which estimates the transformation by using feature points extracted from two images, may cause misalignments. To handle with this limitation, we propose to extract the salient edges and extracted control points (CP) of medical images by using efficiency of multiresolution representation of data nonsubsampled contourlet transform (NSCT) that finds the best feature points. The MR images were first decomposed using the NSCT, and then Edge and CP were extracted from bandpass directional subband of NSCT coefficients and some proposed rules. After edge and CP extraction, mutual information was adopted for the registration of feature points and translation parameters are calculated by using particle swarm optimization (PSO). The experimental results showed that the proposed method produces totally accurate performance for registration medical CT-MR images.

Urban Environmental Challenges in Developing Cities: The Case of Ethiopian Capital Addis Ababa

Addis Ababa is a seat of African Union (AU), United Nations Economic Commission for Africa (UN-ECA) and hundreds of embassies and consular representatives. Addis Ababa is one of the highest capitals in the world with an average 2400 meters above sea level. It is dichotomous city with a blend of modern high-rise and deteriorating slum quarters. Water supply and sanitation, waste management and housing are continuing to be serious problems. Forest wood based domestic energy use as well as uncontrolled emissions from mobile and fixed sources has endangered the state of the urban environment. Analysis based on satellite imagery has revealed the deteriorating urban environment within the last three decades. The recently restructured city administration has brought improvements in the condition of the urban environment. However, the overwhelming size of the challenges faced by the city dwarfed their fairly good results.

Germination of Barley as Affected by the Allelopathy of Sisymbrium irio L. and Descurainiasophia (L.) Schur

An experiment was conducted under controlled conditions to study the effect of water extract of leaves, shoots and roots of either Sisymbrium irio L. =SISIR and or Descurainia sophia (L.) Schur =DESSO on the germination and primary growth of barley. A split-split plot experiment in CRD with three replications was used. The main plots were the type of weed: i.e. SISIR and DESSO and the sub-plots were type of organ: i.e. leaf, stem and root and, the sub-sub plots were concentration of the water extract of each organ of the weeds: i.e. 0, 2, 4 and 8 % w/v. The results showed that the SISIR water extracts had a greater inhibitory effects on the germination and primary growth of barley than those of DESSO water extracts. The water extracts of the leaves of both weeds had the greatest inhibitory effects on the germination and primary growth of barley, compared to those of stems and roots. Increasing the concentration of water extracts of leaves, stems and roots of both weeds up to 8 % caused the greatest inhibitory effects to barley and reduced the germination rate and primary growth of it linearly.

Application of Homotopy Perturbation Method to Solve Steady Flow of Walter B Fluid A Vertical Channel In Porous Media

In this article, a simulation method called the Homotopy Perturbation Method (HPM) is employed in the steady flow of a Walter's B' fluid in a vertical channel with porous wall. We employed Homotopy Perturbation Method to derive solution of a nonlinear form of equation obtained from exerting similarity transforming to the ordinary differential equation gained from continuity and momentum equations of this kind of flow. The results obtained from the Homotopy Perturbation Method are then compared with those from the Runge–Kutta method in order to verify the accuracy of the proposed method. The results show that the Homotopy Perturbation Method can achieve good results in predicting the solution of such problems. Ultimately we use this solution to obtain the other terms of velocities and physical discussion about it.

Mass Transfer Modeling in a Packed Bed of Palm Kernels under Supercritical Conditions

Studies on gas solid mass transfer using Supercritical fluid CO2 (SC-CO2) in a packed bed of palm kernels was investigated at operating conditions of temperature 50 °C and 70 °C and pressures ranges from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa. The development of mass transfer models requires knowledge of three properties: the diffusion coefficient of the solute, the viscosity and density of the Supercritical fluids (SCF). Matematical model with respect to the dimensionless number of Sherwood (Sh), Schmidt (Sc) and Reynolds (Re) was developed. It was found that the model developed was found to be in good agreement with the experimental data within the system studied.

Students, Knowledge and Employability

Citizens are increasingly are provided with choice and customization in public services and this has now also become a key feature of higher education in terms of policy roll-outs on personal development planning (PDP) and more generally as part of the employability agenda. The goal here is to transform people, in this case graduates, into active, responsible citizen-workers. A key part of this rhetoric and logic is the inculcation of graduate attributes within students. However, there has also been a concern with the issue of student lack of engagement and perseverance with their studies. This paper sets out to explore some of these conceptions that link graduate attributes with citizenship as well as the notion of how identity is forged through the higher education process. Examples are drawn from a quality enhancement project that is being operated within the context of the Scottish higher education system. This is further framed within the wider context of competing and conflicting demands on higher education, exacerbated by the current worldwide economic climate. There are now pressures on students to develop their employability skills as well as their capacity to engage with global issues such as behavioural change in the light of environmental concerns. It is argued that these pressures, in effect, lead to a form of personalization that is concerned with how graduates develop their sense of identity as something that is engineered and re-engineered to meet these demands.

Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery

The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.