E-Government in Transition Economies

This paper deals with e-government issues at several levels. Initially we look at the concept of e-government itself in order to give it a sound framework. Than we look at the e-government issues at three levels, first we analyse it at the global level, second we analyse it at the level of transition economies, and finally we take a closer look on developments in Croatia. The analysis includes actual progress being made in selected transition economies given the Euro area averages, along with e-government potential in future demanding period.

Gas Detonation Forming by a Mixture of H2+O2 Detonation

Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detonation tube. The detonation wave goes through the detonation tube and acts as a blast load on the steel blank and forms it. Experimental results are compared with a finite element model; and the comparison of the experimental and numerical results obtained from strain, thickness variation and deformed geometry is carried out. Numerical and experimental results showed approximately 75 – 90 % similarity in formability of desired shape. Also optimum percent of gas mixture obtained when we mix 68% H2 with 32% O2.

Web Application to Profiling Scientific Institutions through Citation Mining

Recently the use of data mining to scientific bibliographic data bases has been implemented to analyze the pathways of the knowledge or the core scientific relevances of a laureated novel or a country. This specific case of data mining has been named citation mining, and it is the integration of citation bibliometrics and text mining. In this paper we present an improved WEB implementation of statistical physics algorithms to perform the text mining component of citation mining. In particular we use an entropic like distance between the compression of text as an indicator of the similarity between them. Finally, we have included the recently proposed index h to characterize the scientific production. We have used this web implementation to identify users, applications and impact of the Mexican scientific institutions located in the State of Morelos.

A Hybrid Recommender System based on Collaborative Filtering and Cloud Model

User-based Collaborative filtering (CF), one of the most prevailing and efficient recommendation techniques, provides personalized recommendations to users based on the opinions of other users. Although the CF technique has been successfully applied in various applications, it suffers from serious sparsity problems. The cloud-model approach addresses the sparsity problems by constructing the user-s global preference represented by a cloud eigenvector. The user-based CF approach works well with dense datasets while the cloud-model CF approach has a greater performance when the dataset is sparse. In this paper, we present a hybrid approach that integrates the predictions from both the user-based CF and the cloud-model CF approaches. The experimental results show that the proposed hybrid approach can ameliorate the sparsity problem and provide an improved prediction quality.

Enhance Halorespiration in Rhodopseudomonas palustris with Cytochrome P450cam System from Pseudomonas putida

To decompose organochlorides by bioremediation, co-culture biohydrogen producer and dehalogenation microorganisms is a useful method. In this study, we combined these two characteristics from a biohydrogen producer, Rhodopseudomonas palustris, and a dehalogenation microorganism, Pseudomonas putida, to enchance halorespiration in R. palustris. The genes encoding cytochrome P450cam system (camC, camA, and camB) from P. putida were expressed in R. palustris with designated expression plasmid. All tested strains were cultured to log phase then presented pentachloroethane (PCA) in media. The vector control strain could degrade PCA about 78% after 16 hours, however, the cytochrome P450cam system expressed strain, CGA-camCAB, could completely degrade PCA in 12 hours. While taking chlorinated aromatic, 3-chlorobenzoate, as sole carbon source or present benzoate as co-substrate, CGA-camCAB presented faster growth rate than vector control strain.

A Block World Problem Based Sudoku Solver

There are many approaches proposed for solving Sudoku puzzles. One of them is by modelling the puzzles as block world problems. There have been three model for Sudoku solvers based on this approach. Each model expresses Sudoku solver as a parameterized multi agent systems. In this work, we propose a new model which is an improvement over the existing models. This paper presents the development of a Sudoku solver that implements all the proposed models. Some experiments have been conducted to determine the performance of each model.

Supercompression for Full-HD and 4k-3D (8k)Digital TV Systems

In this work, we developed the concept of supercompression, i.e., compression above the compression standard used. In this context, both compression rates are multiplied. In fact, supercompression is based on super-resolution. That is to say, supercompression is a data compression technique that superpose spatial image compression on top of bit-per-pixel compression to achieve very high compression ratios. If the compression ratio is very high, then we use a convolutive mask inside decoder that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. Specifically, the mentio-ned mask is coded inside texture memory of a GPGPU.

Heat Exchanger Design

This paper is intended to assist anyone with some general technical experience, but perhaps limited specific knowledge of heat transfer equipment. A characteristic of heat exchanger design is the procedure of specifying a design, heat transfer area and pressure drops and checking whether the assumed design satisfies all requirements or not. The purpose of this paper is how to design the oil cooler (heat exchanger) especially for shell-and-tube heat exchanger which is the majority type of liquid-to-liquid heat exchanger. General design considerations and design procedure are also illustrated in this paper and a flow diagram is provided as an aid of design procedure. In design calculation, the MatLAB and AutoCAD software are used. Fundamental heat transfer concepts and complex relationships involved in such exchanger are also presented in this paper. The primary aim of this design is to obtain a high heat transfer rate without exceeding the allowable pressure drop. This computer program is highly useful to design the shell-and-tube type heat exchanger and to modify existing deign.

Comparison of Finite Difference Schemes for Water Flow in Unsaturated Soils

Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The numerical solutions of two problems were compared using four evaluation criteria and the results of comparisons showed that fully implicit scheme is better than the other schemes. In addition, utilizing of standard chord slope method for approximation of moisture capacity function, automatic time stepping method and difference between two successive iterations as convergence criterion in the fully implicit scheme can lead to better and more reliable results for simulation of fluid movement in different unsaturated soils.

Image Enhancement using α-Trimmed Mean ε-Filters

Image enhancement is the most important challenging preprocessing for almost all applications of Image Processing. By now, various methods such as Median filter, α-trimmed mean filter, etc. have been suggested. It was proved that the α-trimmed mean filter is the modification of median and mean filters. On the other hand, ε-filters have shown excellent performance in suppressing noise. In spite of their simplicity, they achieve good results. However, conventional ε-filter is based on moving average. In this paper, we suggested a new ε-filter which utilizes α-trimmed mean. We argue that this new method gives better outcomes compared to previous ones and the experimental results confirmed this claim.

Problems and Possible Solutions with the Development of a Computer Model of Quantum Theory

A computer model of Quantum Theory (QT) has been developed by the author. Major goal of the computer model was support and demonstration of an as large as possible scope of QT. This includes simulations for the major QT (Gedanken-) experiments such as, for example, the famous double-slit experiment. Besides the anticipated difficulties with (1) transforming exacting mathematics into a computer program, two further types of problems showed up, namely (2) areas where QT provides a complete mathematical formalism, but when it comes to concrete applications the equations are not solvable at all, or only with extremely high effort; (3) QT rules which are formulated in natural language and which do not seem to be translatable to precise mathematical expressions, nor to a computer program. The paper lists problems in all three categories and describes also the possible solutions or circumventions developed for the computer model.

Fabricating Protruded Micro-features on AA6061 Substrates by Hot Embossing Method

Metallic micro parts are playing an important role in micro-fabrication industry. Recently, we have demonstrated a new deformation mechanism for micro-formability of polycrystalline materials. Different depressed micro-features smaller than the grain size have been successfully fabricated on 6061 aluminum alloy (AA6061) substrates with good fidelity. To further verify this proposed deformation mechanism that grain size is not a limiting factor, we demonstrate here that in addition of depressed features, protruded micro-features on a polycrystalline substrate can similarly be fabricated.

Optimizing usage of ICTs and Outsourcing Strategic in Business Models and Customer Satisfaction

Nowadays, under developed countries for progress in science and technology and decreasing the technologic gap with developed countries, increasing the capacities and technology transfer from developed countries. To remain competitive, industry is continually searching for new methods to evolve their products. Business model is one of the latest buzzwords in the Internet and electronic business world. To be successful, organizations must look into the needs and wants of their customers. This research attempts to identify a specific feature of the company with a strong competitive advantage by analyzing the cause of Customer satisfaction. Due to the rapid development of knowledge and information technology, business environments have become much more complicated. Information technology can help a firm aiming to gain a competitive advantage. This study explores the role and effect of Information Communication Technology in Business Models and Customer satisfaction on firms and also relationships between ICTs and Outsourcing strategic.

Experimental and Theoretical Investigation on Notched Specimens Life Under Bending Loading

In this work, bending fatigue life of notched specimens with various notch geometries and dimensions is investigated by experiment and Manson-Caffin theoretical method. In this theoretical method, fatigue life of notched specimens is calculated using the fatigue life obtained from the experiments for plain specimens (without notch). Three notch geometries including ∪-shape, ∨-shape and C -shape notches are considered in this investigation. The experiments are conducted on a rotary bending Moore machine. The specimens are made of a low carbon steel alloy, which has wide application in industry. The stress- life curves are captured for all notched specimen by experiment. The results indicate that Manson-Caffin analytical method cannot adequately predict the fatigue life of notched specimen. However, it seems that the difference between the experiments and Manson-Caffin predictions can be compensated by a proportional factor.

Analysis of Food Security Situation among Nigerian Rural Farmers

This paper analysed the food security situation among Nigerian rural farmers. Data collected on 202 rural farmers from Benue State were analysed using descriptive and inferential statistics. The study revealed that majority of the respondents (60.83%) had medium dietary diversity. Furthermore, household daily calorie requirement for the food secure households was 10,723 and the household daily calorie consumption was 12,598, with a surplus index of 0.04. The food security index was 1.16. The Household daily per capita calorie consumption was 3,221.2. For the food insecure households, the household daily calorie requirement was 20,213 and the household daily calorie consumption was 17,393. The shortfall index was 0.14. The food security index was 0.88. The Household daily per capita calorie consumption was 2,432.8. The most commonly used coping strategies during food stress included intercropping (99.2%), reliance on less preferred food (98.1%), limiting portion size at meal times (85.8%) and crop diversification (70.8%).

Reversible, Embedded and Highly Scalable Image Compression System

In this work a new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuous-tone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different importance levels from which the bit stream will be generated. The subcomponents of each importance level are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several improvement levels.

Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem

In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.

A 1.2-ns16×16-Bit Binary Multiplier Using High Speed Compressors

For higher order multiplications, a huge number of adders or compressors are to be used to perform the partial product addition. We have reduced the number of adders by introducing special kind of adders that are capable to add five/six/seven bits per decade. These adders are called compressors. Binary counter property has been merged with the compressor property to develop high order compressors. Uses of these compressors permit the reduction of the vertical critical paths. A 16×16 bit multiplier has been developed using these compressors. These compressors make the multipliers faster as compared to the conventional design that have been used 4-2 compressors and 3-2 compressors.

Assessing the Effect of Thermodynamic, Hydrodynamic and Geometric of an Air Cooled Condenser on COP of Vapor Compression Cycle

In this paper, the effects of thermodynamic, hydrodynamic and geometric of an air cooled condenser on COP of vapor compression cycle are investigated for a fixed condenser facing surface area. The system is utilized with a scroll compressor, modeled based on thermodynamic and heat transfer equations employing Matlab software. The working refrigerant is R134a whose thermodynamic properties are called from Engineering Equation Software. This simulation shows that vapor compression cycle can be designed by different configurations and COPs, economical and optimum working condition can be obtained via considering these parameters.

Density, Strength, Thermal Conductivity and Leachate Characteristics of Light-Weight Fired Clay Bricks Incorporating Cigarette Butts

Several trillion cigarettes produced worldwide annually lead to many thousands of kilograms of toxic waste. Cigarette butts (CBs) accumulate in the environment due to the poor biodegradability of the cellulose acetate filters. This paper presents some of the results from a continuing study on recycling CBs into fired clay bricks. Physico-mechanical properties of fired clay bricks manufactured with different percentages of CBs are reported and discussed. The results show that the density of fired bricks was reduced by up to 30 %, depending on the percentage of CBs incorporated into the raw materials. Similarly, the compressive strength of bricks tested decreased according to the percentage of CBs included in the mix. The thermal conductivity performance of bricks was improved by 51 and 58 % for 5 and 10 % CBs content respectively. Leaching tests were carried out to investigate the levels of possible leachates of heavy metals from the manufactured clay-CB bricks. The results revealed trace amounts of heavy metals.