Effect of Orientation of the Wall Window on Energy Saving under Clear Sky Conditions

In this paper, an attempt has been made to analyze the effect of wall window orientation on Daylight Illuminance Ratio (DIR) and energy saving in a building known as “SODHA BERS COMPLEX (SBC)” at Varanasi, UP, India. The building has been designed incorporating all passive concepts for thermal comfort as well daylighting concepts to maximize the use of natural daylighting for the occupants in the day to day activities. The annual average DIR and the energy saving has been estimated by using the DIR model for wall window with different orientations under clear sky condition. It has been found that for south oriented window the energy saving per square meter is more compared to the other orientations due to the higher level of solar insolation for the south window in northern hemisphere whereas energy saving potential is minimum for north oriented wall window. The energy saving potential was 26%, 81% and 51% higher for east, south and west oriented window in comparison to north oriented window. The average annual DIR has same trends of variation as the annual energy saving and it is maximum for south oriented window and minimum for north oriented window.

Evaluation of Residual Stresses in Human Face as a Function of Growth

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Computer-Assisted Management of Building Climate and Microgrid with Model Predictive Control

With 40% of total world energy consumption, building systems are developing into technically complex large energy consumers suitable for application of sophisticated power management approaches to largely increase the energy efficiency and even make them active energy market participants. Centralized control system of building heating and cooling managed by economically-optimal model predictive control shows promising results with estimated 30% of energy efficiency increase. The research is focused on implementation of such a method on a case study performed on two floors of our faculty building with corresponding sensors wireless data acquisition, remote heating/cooling units and central climate controller. Building walls are mathematically modeled with corresponding material types, surface shapes and sizes. Models are then exploited to predict thermal characteristics and changes in different building zones. Exterior influences such as environmental conditions and weather forecast, people behavior and comfort demands are all taken into account for deriving price-optimal climate control. Finally, a DC microgrid with photovoltaics, wind turbine, supercapacitor, batteries and fuel cell stacks is added to make the building a unit capable of active participation in a price-varying energy market. Computational burden of applying model predictive control on such a complex system is relaxed through a hierarchical decomposition of the microgrid and climate control, where the former is designed as higher hierarchical level with pre-calculated price-optimal power flows control, and latter is designed as lower level control responsible to ensure thermal comfort and exploit the optimal supply conditions enabled by microgrid energy flows management. Such an approach is expected to enable the inclusion of more complex building subsystems into consideration in order to further increase the energy efficiency.

Estimate of Maximum Expected Intensity of One-Half-Wave Lines Dancing

In this paper, the regression dependence of dancing intensity from wind speed and length of span was established due to the statistic data obtained from multi-year observations on line wires dancing accumulated by power systems of Kazakhstan and the Russian Federation. The lower and upper limitations of the equations parameters were estimated, as well as the adequacy of the regression model. The constructed model will be used in research of dancing phenomena for the development of methods and means of protection against dancing and for zoning plan of the territories of line wire dancing.

Power Performance Improvement of 500W Vertical Axis Wind Turbine with Salient Design Parameters

This paper presents the performance characteristics of Darrieus-type vertical axis wind turbine (VAWT) with NACA airfoil blades. The performance of Darrieus-type VAWT can be characterized by torque and power. There are various parameters affecting the performance such as chord length, helical angle, pitch angle and rotor diameter. To estimate the optimum shape of Darrieustype wind turbine in accordance with various design parameters, we examined aerodynamic characteristics and separated flow occurring in the vicinity of blade, interaction between flow and blade, and torque and power characteristics derived from it. For flow analysis, flow variations were investigated based on the unsteady RANS (Reynolds-averaged Navier-Stokes) equation. Sliding mesh algorithm was employed in order to consider rotational effect of blade. To obtain more realistic results we conducted experiment and numerical analysis at the same time for three-dimensional shape. In addition, several parameters (chord length, rotor diameter, pitch angle, and helical angle) were considered to find out optimum shape design and characteristics of interaction with ambient flow. Since the NACA airfoil used in this study showed significant changes in magnitude of lift and drag depending on an angle of attack, the rotor with low drag, long cord length and short diameter shows high power coefficient in low tip speed ratio (TSR) range. On the contrary, in high TSR range, drag becomes high. Hence, the short-chord and long-diameter rotor produces high power coefficient. When a pitch angle at which airfoil directs toward inside equals to -2° and helical angle equals to 0°, Darrieus-type VAWT generates maximum power.

Use of Locomotor Activity of Rainbow Trout Juveniles in Identifying Sublethal Concentrations of Landfill Leachate

Landfill waste is a common problem as it has an economic and environmental impact even if it is closed. Landfill waste contains a high density of various persistent compounds such as heavy metals, organic and inorganic materials. As persistent compounds are slowly-degradable or even non-degradable in the environment, they often produce sublethal or even lethal effects on aquatic organisms. The aims of the present study were to estimate sublethal effects of the Kairiai landfill (WGS: 55°55‘46.74“, 23°23‘28.4“) leachate on the locomotor activity of rainbow trout Oncorhynchus mykiss juveniles using the original system package developed in our laboratory for automated monitoring, recording and analysis of aquatic organisms’ activity, and to determine patterns of fish behavioral response to sublethal effects of leachate. Four different concentrations of leachate were chosen: 0.125; 0.25; 0.5 and 1.0 mL/L (0.0025; 0.005; 0.01 and 0.002 as part of 96-hour LC50, respectively). Locomotor activity was measured after 5, 10 and 30 minutes of exposure during 1-minute test-periods of each fish (7 fish per treatment). The threshold-effect-concentration amounted to 0.18 mL/L (0.0036 parts of 96-hour LC50). This concentration was found to be even 2.8-fold lower than the concentration generally assumed to be “safe” for fish. At higher concentrations, the landfill leachate solution elicited behavioral response of test fish to sublethal levels of pollutants. The ability of the rainbow trout to detect and avoid contaminants occurred after 5 minutes of exposure. The intensity of locomotor activity reached a peak within 10 minutes, evidently decreasing after 30 minutes. This could be explained by the physiological and biochemical adaptation of fish to altered environmental conditions. It has been established that the locomotor activity of juvenile trout depends on leachate concentration and exposure duration. Modeling of these parameters showed that the activity of juveniles increased at higher leachate concentrations, but slightly decreased with the increasing exposure duration. Experiment results confirm that the behavior of rainbow trout juveniles is a sensitive and rapid biomarker that can be used in combination with the system for fish behavior monitoring, registration and analysis to determine sublethal concentrations of pollutants in ambient water. Further research should be focused on software improvement aimed to include more parameters of aquatic organisms’ behavior and to investigate the most rapid and appropriate behavioral responses in different species. In practice, this study could be the basis for the development and creation of biological early-warning systems (BEWS).

Incidence of Acinetobacter in Fresh Carrot (Daucus carota subsp. sativus)

The research aims to investigate the occurrence of multidrug-resistant Acinetobacter, in carrot and estimate the role of carrot in its transmission in a rapidly growing urban population. Thus, 50 carrot samples were collected from Jakara wastewater irrigation farms and are analyzed on MacConkey agar and screened by Microbact 24E (Oxoid) and susceptibility of isolates is tested against 10 commonly used antibiotics. Acinetobacter baumannii and A. lwoffii were isolated in 22.00% and 16% of samples respectively. Resistance to ceporex and penicillin of 36.36% and 27.27% in A. baumannii, and sensitivity to ofloxacin, pefloxacin, gentimycin and co-trimoxazole were observed. However, for A. lwoffii apart from 37.50% resistance to ceporex, it was also resistant to all other drugs tested. There were similarities in the resistances shown by A. baumannii and A. lwoffii to fluoroquinolones and β- lactame drug families in addition to between sulfonamide and animoglycoside demonstrated by A. lwoffii. Significant correlation in similarities were observed at P < 0.05 to CPX to NA (46.2%), and SXT to AU (52.6%) A. baumannii and A. lwoffii respectively and high multi drug resistance (MDR) of 27.27% and 62.50% by A. baumannii and A. lwoffii respectively. The occurrence of multidrug-resistance pathogen in carrot is a serious challenge to public health care, especially in a rapidly growing urban population where subsistence agriculture contributes greatly to urban livelihood and source of vegetables.

The Use of Substances and Sports Performance among Youth: Implications for Lagos State Sports

The focus of this study was to determine the factors associated with the use of substances for sport performance of youth in Lagos state sport. Questionnaire was the instrument used for the study. Descriptive research method was used. The estimated population for the study was 2000 sport men and women. The sample size was 200 respondents for purposive sampling techniques were used. The instrument was validated in it content and constructs value. The instrument was administered with the assistance of the coaches. Same 200 copies administered were returned. The data obtained was analysed using simple percentage and chi-square (x2) for stated hypothesis at 0.05 level of significance. The finding reveal that sport injuries exercise induced and anaphylaxis and asthma and feeling of loss of efficacy associated with alcohol used on sport performance among the users of substances. Alcohol users are recommended to partake in sport like swimming, basketball and volleyball because they have space of time for resting while at play. Government should be fully in charge of the health of sport men and women.

Field Programmable Gate Array Based Infinite Impulse Response Filter Using Multipliers

In this paper, an Infinite Impulse Response (IIR) filter has been designed and simulated on an Field Programmable Gate Arrays (FPGA). The implementation is based on Multiply Add and Accumulate (MAC) algorithm which uses multiply operations for design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of target device. The designed filter has been synthesized on Digital Signal Processor (DSP) slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The proposed design is simulated with Matlab, synthesized with Xilinx Synthesis Tool, and implemented on FPGA devices. The Virtex 5 FPGA based design can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP based design. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Modeling of a Vehicle Wheel System Having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

An Estimation of Variance Components in Linear Mixed Model

In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.

The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings

Average temperatures worldwide are expected to continue to rise. At the same time, major cities in developing countries are becoming increasingly populated and polluted. Governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of a model, which is able to estimate the occupant exposure to extreme temperatures and high air pollution within domestic buildings. Building physics simulations were performed using the EnergyPlus building physics software. An accurate metamodel is then formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) have been compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.

Approximating Maximum Speed on Road from Curvature Information of Bezier Curve

Bezier curves have useful properties for path generation problem, for instance, it can generate the reference trajectory for vehicles to satisfy the path constraints. Both algorithms join cubic Bezier curve segment smoothly to generate the path. Some of the useful properties of Bezier are curvature. In mathematics, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line. Another extrinsic example of curvature is a circle, where the curvature is equal to the reciprocal of its radius at any point on the circle. The smaller the radius, the higher the curvature thus the vehicle needs to bend sharply. In this study, we use Bezier curve to fit highway-like curve. We use different approach to find the best approximation for the curve so that it will resembles highway-like curve. We compute curvature value by analytical differentiation of the Bezier Curve. We will then compute the maximum speed for driving using the curvature information obtained. Our research works on some assumptions; first, the Bezier curve estimates the real shape of the curve which can be verified visually. Even though, fitting process of Bezier curve does not interpolate exactly on the curve of interest, we believe that the estimation of speed are acceptable. We verified our result with the manual calculation of the curvature from the map.

Estimation Model for Concrete Slump Recovery by Using Superplasticizer

This paper aimed to introduce the solution of concrete slump recovery using chemical admixture type-F (superplasticizer, naphthalene base) to the practice in order to solve unusable concrete problem due to concrete loss its slump, especially for those tropical countries that have faster slump loss rate. In the other hand, randomly adding superplasticizer into concrete can cause concrete to segregate. Therefore, this paper also develops the estimation model used to calculate amount of second dose of superplasticizer need for concrete slump recovery. Fresh properties of ordinary Portland cement concrete with volumetric ratio of paste to void between aggregate (paste content) of 1.1-1.3 with water-cement ratio zone of 0.30 to 0.67 and initial superplasticizer (naphthalene base) of 0.25%-1.6% were tested for initial slump and slump loss for every 30 minutes for one and half hour by slump cone test. Those concretes with slump loss range from 10% to 90% were re-dosed and successfully recovered back to its initial slump. Slump after re-dosed was tested by slump cone test. From the result, it has been concluded that, slump loss was slower for those mix with high initial dose of superplasticizer due to addition of superplasticizer will disturb cement hydration. The required second dose of superplasticizer was affected by two major parameters, which were water-cement ratio and paste content, where lower water-cement ratio and paste content cause an increase in require second dose of superplasticizer. The amount of second dose of superplasticizer is higher as the solid content within the system is increase, solid can be either from cement particles or aggregate. The data was analyzed to form an equation use to estimate the amount of second dosage requirement of superplasticizer to recovery slump to its original.

Cost Valuation Method for Development Concurrent Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a nonnegligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Comparison of the Amount of Resources and Expansion Support Policy of Photovoltaic Power Generation: A Case on Hokkaido and Aichi Prefecture, Japan

Now, the use of renewable energy power generation has been advanced. In this paper, we compared the usable amount of resource for photovoltaic power generation which was estimated using the NEDO formula and the expansion support policy of photovoltaic power generation which was researched using Internet in the municipality level in Hokkaido and Aichi Prefecture, Japan. This paper will contribute to grasp the current situation especially about the policy. As a result, there were municipalities which seemed to be no consideration of fitting the amount of resources. We think it would need to consider the suitability between the resources and policies.

The Effect of Saccharomyces cerevisiae Live Yeast Culture on Microbial Nitrogen Supply to Small Intestine in Male Kivircik Yearlings Fed with Different Forage-Concentrate Ratios

The aim of the study was to investigate the effect of Saccharomyces cerevisiae (SC) live yeast culture on microbial protein supply to small intestine in Kivircik male yearlings when fed with different ratio of forage and concentrate diets. Four Kivircik male yearlings with permanent rumen canula were used in the experiment. The treatments were allocated to a 4x4 Latin square design. Diet I consisted of 70% alfalfa hay and 30% concentrate, Diet II consisted of 30% alfalfa hay and 70% concentrate, Diet I and II were supplemented with a SC. Daily urine was collected and stored at -20°C until analysis. Calorimetric methods were used for the determination of urinary allantoin and creatinine levels. The estimated microbial N supply to small intestine for Diets I, I+SC, II and II+SC were 2.51, 2.64, 2.95 and 3.43 g N/d respectively. Supplementation of Diets I and II with SC significantly affected the allantoin levels in μmol/W0.75 (p

Ground Motion Modelling in Bangladesh Using Stochastic Method

Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW, and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.

The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey

The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater, we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate onedimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.