Pefloxacin as a Surrogate Marker for Ciprofloxacin Resistance in Salmonella: Study from North India

Fluoroquinolones form the mainstay of therapy for the treatment of infections due to Salmonella enterica subsp. enterica. There is a complex interplay between several resistance mechanisms for quinolones and various fluoroquinolones discs, giving varying results, making detection and interpretation of fluoroquinolone resistance difficult. For detection of fluoroquinolone resistance in Salmonella ssp., we compared the use of pefloxacin and nalidixic acid discs as surrogate marker. Using MIC for ciprofloxacin as the gold standard, 43.5% of strains showed MIC as ≥1 μg/ml and were thus resistant to fluoroquinoloes. Based on the performance of nalidixic acid and pefloxacin discs as surrogate marker for ciprofloxacin resistance, both the discs could correctly detect all the resistant phenotypes; however, use of nalidixic acid disc showed false resistance in the majority of the sensitive phenotypes. We have also tested newer antimicrobial agents like cefixime, imipenem, tigecycline and azithromycin against Salmonella spp. Moreover, there was a comeback of susceptibility to older antimicrobials like ampicillin, chloramphenicol, and cotrimoxazole. We can also use cefixime, imipenem, tigecycline and azithromycin in the treatment of multidrug resistant S. typhi due to their high susceptibility.

Quartz Crystal Microbalance Holder Design for On-Line Sensing in Liquid Applications

In this paper, the design of a QCM sensor for liquid media measurements in vertical position is described. A rugged and low-cost proof holder has been designed, the cost of which is significantly lower than those of traditional commercial holders. The crystal is not replaceable but it can be easily cleaned. Its small volume permits to be used by dipping it in the liquid with the desired location and orientation. The developed design has been experimentally validated by measuring changes in the resonance frequency and resistance of the QCM sensor immersed vertically in different calibrated aqueous glycerol solutions. The obtained results show a great agreement with the Kanazawa theoretical expression. Consequently, the designed QCM sensor would be appropriate for sensing applications in liquids, and might take part of a future on-line multichannel low-cost QCM-based measurement system.

Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

A Study on Bilingual Semantic Processing: Category Effects and Age Effects

The present study addressed the nature of bilingual semantic processing in Mandarin Chinese and Southern Min and examined category effects and age effects. Nineteen bilingual adults of Mandarin Chinese and Southern Min, nine monolingual seniors of Mandarin Chinese, and ten monolingual seniors of Southern Min in Taiwan individually completed two semantic tasks: Picture naming and category fluency tasks. The instruments for the naming task were sixty black-and-white pictures, including thirty-five object pictures and twenty-five action pictures. The category fluency task also consisted of two semantic categories – objects (or nouns) and actions (or verbs). The reaction time for each picture/question was additionally calculated and analyzed. Oral productions in Mandarin Chinese and in Southern Min were compared and discussed to examine the category effects and age effects. The results of the category fluency task indicated that the content of information of these seniors was comparatively deteriorated, and thus they produced a smaller number of semantic-lexical items. Significant group differences were also found in the reaction time results. Category effects were significant for both adults and seniors in the semantic fluency task. The findings of the present study will help characterize the nature of the bilingual semantic processing of adults and seniors, and contribute to the fields of contrastive and corpus linguistics.

Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS

One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P

Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs

Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs.

Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium

TiO2 particles have been added in molten aluminium to result in aluminium based cast Al/Al3Ti-Al2O3 composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al3Ti-Al2O3 composite. The nominal compositions in terms of Mg, Al, and TiO2 contents in the magnesium based composites are Mg-9Al-0.6TiO2, Mg-9Al-0.8TiO2, Mg-9Al-1.0TiO2 and Mg-9Al-1.2TiO2 designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al3Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. β-phase in cast microstructure, Mg17Al12, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of β-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO2 but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO2 in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO2 addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, JIC, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al3Ti and Al2O3 particles in the composite. There is drastic reduction of JIC on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al3Ti rods and the voids between the broken segments of Al3Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO2 addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites.

Genetic Diversity Based Population Study of Freshwater Mud Eel (Monopterus cuchia) in Bangladesh

As genetic diversity is most important for existing, breeding and production of any fish; this study was undertaken for investigating genetic diversity of freshwater mud eel, Monopterus cuchia at population level where three ecological populations such as flooded area of Sylhet (P1), open water of Moulvibazar (P2) and open water of Sunamganj (P3) districts of Bangladesh were considered. Four arbitrary RAPD primers (OPB-12, C0-4, B-03 and OPB-08) were screened and RAPD banding patterns were analyzed among the populations considering 15 individuals of each population. In total 174, 138 and 149 bands were detected in the populations of P1, P2 and P3 respectively; however, each primer revealed less number of bands in each population. 100% polymorphic loci were recorded in P2 and P3 whereas only one monomorphic locus was observed in P1, recorded 97.5% polymorphism. Different genetic parameters such as inter-individual pairwise similarity, genetic distance, Nei genetic similarity, linkage distances, cluster analysis and allelic information, etc. were considered for measuring genetic diversity. The average inter-individual pairwise similarity was recorded 2.98, 1.47 and 1.35 in P1, P2 and P3 respectively. Considering genetic distance analysis, the highest distance 1 was recorded in P2 and P3 and the lowest genetic distance 0.444 was found in P2. The average Nei genetic similarity was observed 0.19, 0.16 and 0.13 in P1, P2 and P3, respectively; however, the average linkage distance was recorded 24.92, 17.14 and 15.28 in P1, P3 and P2 respectively. Based on linkage distance, genetic clusters were generated in three populations where 6 clades and 7 clusters were found in P1, 3 clades and 5 clusters were observed in P2 and 4 clades and 7 clusters were detected in P3. In addition, allelic information was observed where the frequency of p and q alleles were observed 0.093 and 0.907 in P1, 0.076 and 0.924 in P2, 0.074 and 0.926 in P3 respectively. The average gene diversity was observed highest in P2 (0.132) followed by P3 (0.131) and P1 (0.121) respectively.

Switching Studies on Ge15In5Te56Ag24 Thin Films

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Lean Healthcare: Barriers and Enablers in the Colombian Context

Lean philosophy has evolved over time and has been implemented both in manufacturing and services, more recently lean has been integrated in the companies of the health sector. Currently it is important to understand the successful way to implement this philosophy and try to identify barriers and enablers to the sustainability of lean healthcare. The main purpose of this research is to identify the barriers and enablers in the implementation of Lean Healthcare based on case studies of Colombian healthcare centers. In order to do so, we conducted semi-structured interviews based on a maturity model. The main results indicate that the success of Lean implementation depends on its adaptation to contextual factors. In addition, in the Colombian context were identified new factors such as organizational culture, management models, integration of the care and administrative departments and triple helix relationship.

The Management and Funding of Education in Nigeria

This paper looks at the management and funding of education in Nigeria. The concept of management and administration has been concisely defined. Also the historical background of educational management in Nigeria has been discussed alongside the management of primary education, secondary education and tertiary education in Nigeria. Furthermore, the funding of education has also been concisely discussed in this paper alongside the various sources of funds available to education in Nigeria. The sources include government grant, school fees, external aids, school revenue yielding businesses and so on. The budgetary allocation of Nigeria to education from 1999 to 2013 was also highlighted in this in paper and it was discovered that the lowest allocation was in 1999 with 4.46% while the highest allocation was in 2006 with 10.43%. It is also of note that, Nigeria is still yet to meet the recommendation of UNESCO of 26% budgetary allocation to education by developing countries. Recommendations have been drawn that the government should increase budgetary allocation to this sector in a consistent manner because of its importance to the national economy, hoping that with proper monitoring of fund, it would contribute more significantly to the development of the country. An effective utilization of such funds is also advocated for greater achievements. All organs of the government should exhibit good corporate governance and transparency and so on.

Measuring Enterprise Growth: Pitfalls and Implications

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

An Energy Aware Data Aggregation in Wireless Sensor Network Using Connected Dominant Set

Wireless Sensor Networks (WSNs) have many advantages. Their deployment is easier and faster than wired sensor networks or other wireless networks, as they do not need fixed infrastructure. Nodes are partitioned into many small groups named clusters to aggregate data through network organization. WSN clustering guarantees performance achievement of sensor nodes. Sensor nodes energy consumption is reduced by eliminating redundant energy use and balancing energy sensor nodes use over a network. The aim of such clustering protocols is to prolong network life. Low Energy Adaptive Clustering Hierarchy (LEACH) is a popular protocol in WSN. LEACH is a clustering protocol in which the random rotations of local cluster heads are utilized in order to distribute energy load among all sensor nodes in the network. This paper proposes Connected Dominant Set (CDS) based cluster formation. CDS aggregates data in a promising approach for reducing routing overhead since messages are transmitted only within virtual backbone by means of CDS and also data aggregating lowers the ratio of responding hosts to the hosts existing in virtual backbones. CDS tries to increase networks lifetime considering such parameters as sensors lifetime, remaining and consumption energies in order to have an almost optimal data aggregation within networks. Experimental results proved CDS outperformed LEACH regarding number of cluster formations, average packet loss rate, average end to end delay, life computation, and remaining energy computation.

Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Learning Materials for Enhancing Sustainable Colour Fading Process of Fashion Products

This study examines the results of colour fading of cotton fabric by plasma-induced ozone treatment, with an aim to provide learning materials for fashion designers when designing colour fading effects in fashion products. Cotton knitted fabrics were dyed with red reactive dye with a colour depth of 1.5% and were subjected to ozone generated by a commercially available plasma machine for colour fading. The plasma-induced ozone treatment was conducted with different parameters: (i) air concentration = 10%, 30%, 50% and 70%; (ii) water content in fabric = 35% and 45%, and (iii) treatment time = 10 minutes, 20 minutes and 30 minutes. Finally, the colour properties of the plasma–induced ozone treated fabric were measured by spectrophotometer under illuminant D65 to obtain the CIE L*, CIE a* and CIE b* values.

A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Investigation of Regional Differences in Strong Ground Motions for the Iranian Plateau

Regional variations in strong ground motions for the Iranian Plateau have been investigated by using a simple statistical method called Analysis of Variance (ANOVA). In this respect, a large database consisting of 1157 records occurring within the Iranian Plateau with moment magnitudes of greater than or equal to 5 and Joyner-Boore distances up to 200 km has been considered. Geometric averages of horizontal peak ground accelerations (PGA) as well as 5% damped linear elastic response spectral accelerations (SA) at periods of 0.2, 0.5, 1.0, and 2.0 sec are used as strong motion parameters. The initial database is divided into two different datasets, for Northern Iran (NI) and Central and Southern Iran (CSI). The comparison between strong ground motions of these two regions reveals that there is no evidence for significant differences; therefore, data from these two regions may be combined to estimate the unknown coefficients of attenuation relationships.

The Impact of Regulatory Changes on the Development of Mobile Medical Apps

Mobile applications are being used to perform a wide variety of tasks in day-to-day life, ranging from checking email to controlling your home heating. Application developers have recognized the potential to transform a smart device into a medical device, by using a mobile medical application i.e. a mobile phone or a tablet. When initially conceived these mobile medical applications performed basic functions e.g. BMI calculator, accessing reference material etc.; however, increasing complexity offers clinicians and patients a range of functionality. As this complexity and functionality increases, so too does the potential risk associated with using such an application. Examples include any applications that provide the ability to inflate and deflate blood pressure cuffs, as well as applications that use patient-specific parameters and calculate dosage or create a dosage plan for radiation therapy. If an unapproved mobile medical application is marketed by a medical device organization, then they face significant penalties such as receiving an FDA warning letter to cease the prohibited activity, fines and possibility of facing a criminal conviction. Regulatory bodies have finalized guidance intended for mobile application developers to establish if their applications are subject to regulatory scrutiny. However, regulatory controls appear contradictory with the approaches taken by mobile application developers who generally work with short development cycles and very little documentation and as such, there is the potential to stifle further improvements due to these regulations. The research presented as part of this paper details how by adopting development techniques, such as agile software development, mobile medical application developers can meet regulatory requirements whilst still fostering innovation.