Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach

Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.

Effect of Needle Diameter on the Morphological Structure of Electrospun n-Bi2O3/Epoxy-PVA Nanofiber Mats

The effect of needle diameter on the morphological structure of electrospun n-Bi2O3/epoxy-PVA nanofibers has been investigated using three different types of needle diameters. The results were observed and investigated using two techniques of scanning electron microscope (SEM). The first technique is backscattered SEM while the second is secondary electron SEM. The results demonstrate that there is a correlation between the needle diameter and the morphology of electrospun nanofibers. As the internal needle diameter decreases, the average nanofiber diameter decreases and the fibers get thinner and smoother without agglomeration or beads formation. Moreover, with small needle diameter the nanofibrous porosity get larger compared with large needle diameter.

Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth

A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young’s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca2+ and Mg2+ ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach.

Influence of Infrared Radiation on the Growth Rate of Microalgae Chlorella sorokiniana

Nowadays, the progressive decrease of primary natural resources and ongoing upward trend in terms of energy demand, have resulted in development of new generation technological processes which are focused on step-wise production and residues utilization. Thus, microalgae-based 3rd generation bioeconomy is considered one of the most promising approaches that allow production of value-added products and sophisticated utilization of residues biomass. In comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, and thus, addressing issues associated with negative social and environmental impacts. However, one of the most challenging tasks is to undergo seasonal variations and to achieve optimal growing conditions for indoor closed systems that can cover further demand for material and energetic utilization of microalgae. For instance, outdoor cultivation in St. Petersburg (Russia) is only suitable within rather narrow time frame (from mid-May to mid-September). At earlier and later periods, insufficient sunlight and heat for the growth of microalgae were detected. On the other hand, without additional physical effects, the biomass increment in summer is 3-5 times per week, depending on the solar radiation and the ambient temperature. In order to increase biomass production, scientists from all over the world have proposed various technical solutions for cultivators and have been studying the influence of various physical factors affecting biomass growth namely: magnetic field, radiation impact, and electric field, etc. In this paper, the influence of infrared radiation (IR) and fluorescent light on the growth rate of microalgae Chlorella sorokiniana has been studied. The cultivation of Chlorella sorokiniana was carried out in 500 ml cylindrical glass vessels, which were constantly aerated. To accelerate the cultivation process, the mixture was stirred for 15 minutes at 500 rpm following 120 minutes of rest time. At the same time, the metabolic needs in nutrients were provided by the addition of micro- and macro-nutrients in the microalgae growing medium. Lighting was provided by fluorescent lamps with the intensity of 2500 ± 300 lx. The influence of IR was determined using IR lamps with a voltage of 220 V, power of 250 W, in order to achieve the intensity of 13 600 ± 500 lx. The obtained results show that under the influence of fluorescent lamps along with the combined effect of active aeration and variable mixing, the biomass increment on the 2nd day was three times, and on the 7th day, it was eight-fold. The growth rate of microalgae under the influence of IR radiation was lower and has reached 22.6·106 cells·mL-1. However, application of IR lamps for the biomass growth allows maintaining the optimal temperature of microalgae suspension at approximately 25-28°C, which might especially be beneficial during the cold season in extreme climate zones.

Reading and Teaching Poetry as Communicative Discourse: A Pragma-Linguistic Approach

Language is communication on several discourse levels. The target of teaching a language and the literature of a foreign language is to communicate a message. Reading, appreciating, analysing, and interpreting poetry as a sophisticated rhetorical expression of human thoughts, emotions, and philosophical messages is more feasible through the use of linguistic pragmatic tools from a communicative discourse perspective. The poet's intention, speech act, illocutionary act, and perlocutionary goal can be better understood when communicative situational context as well as linguistic discourse structure theories are employed. The use of linguistic theories in the teaching of poetry is, therefore, intrinsic to students' comprehension, interpretation, and appreciation of poetry of the different ages. It is the purpose of this study to show how both teachers as well as students can apply these linguistic theories and tools to dramatic poetic texts for an engaging, enlightening, and effective interpretation and appreciation of the language. Theories drawn from areas of pragmatics, discourse analysis, embedded discourse level, communicative situational context, and other linguistic approaches were applied to selected poetry texts from the different centuries. Further, in a simple statistical count of the number of poems with dialogic dramatic discourse with embedded two or three levels of discourse in different anthologies outweighs the number of descriptive poems with a one level of discourse, between the poet and the reader. Poetry is thus discourse on one, two, or three levels. It is, therefore, recommended that teachers and students in the area of ESL/EFL use the linguistics theories for a better understanding of poetry as communicative discourse. The practice of applying these linguistic theories in classrooms and in research will allow them to perceive the language and its linguistic, social, and cultural aspect. Texts will become live illocutionary acts with a perlocutionary acts goal rather than mere literary texts in anthologies.

Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Molding Properties of Cobalt-Chrome-Based Feedstocks Used in Low-Pressure Powder Injection Molding

Low-pressure powder injection molding is an emerging technology for cost-effectively producing complex shape metallic parts with the proper dimensional tolerances, either in high or in low production volumes. In this study, the molding properties of cobalt-chrome-based feedstocks were evaluated for use in a low-pressure powder injection molding process. The rheological properties of feedstock formulations were obtained by mixing metallic powder with a proprietary wax-based binder system. Rheological parameters such as reference viscosity, shear rate sensitivity index, and activation energy for viscous flow, were extracted from the viscosity profiles and introduced into the Weir model to calculate the moldability index. Feedstocks were experimentally injected into a spiral mold cavity to validate the injection performance calculated with the model.

The Effect of the Parameters of the Grinding on the Characteristics of the Deposit Phosphate Ore of Kef Es Sennoun, Djebel Onk-Tebessa, Algeria

The objective of this study was to provide answers for a better understanding of the mechanisms involved during grinding. To obtain a phosphate powder, we carry out sieving - grinding circuits for each parameter influencing the process. The analysis of the average particle size of the different tests carried out served in the first place as a basis for the determination of the granulometric curve area, the characteristics and the granular coefficients, then the exploitation of the different results for the calculation of the energies consumed for the fragmentation of different ore types, the energy coefficients as well as the ability to grind. Indeed, a time of 5 to 10 minutes can be chosen as the optimal grinding time in a disc mill for a % in weight of the highest pass. However, grinding time can influence the granular characteristics of ore.

Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques

Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.

The Politics of Foreign Direct Investment for Socio-Economic Development in Nigeria: An Assessment of the Fourth Republic Strategies (1999 - 2014)

In the contemporary global political economy, foreign direct investment (FDI) is gaining currency on daily basis. Notably, the end of the Cold War has brought about the dominance of neoliberal ideology with its mantra of private-sector-led economy. As such, nation-states now see FDI attraction as an important element in their approach to national development. Governments and policy makers are preoccupying themselves with unraveling the best strategies to not only attract more FDI but also to attain the desired socio-economic development status. In Nigeria, the perceived development potentials of FDI have brought about aggressive hunt for foreign investors, most especially since transition to civilian rule in May 1999. Series of liberal and market oriented strategies are being adopted not only to attract foreign investors but largely to stimulate private sector participation in the economy. It is on this premise that this study interrogates the politics of FDI attraction for domestic development in Nigeria between 1999 and 2014, with the ultimate aim of examining the nexus between regime type and the ability of a state to attract and benefit from FDI. Building its analysis within the framework of institutional utilitarianism, the study posits that the essential FDI strategies for achieving the greatest happiness for the greatest number of Nigerians are political not economic. Both content analysis and descriptive survey methodology were employed in carrying out the study. Content analysis involves desk review of literatures that culminated in the development of the study’s conceptual and theoretical framework of analysis. The study finds no significant relationship between transition to democracy and FDI inflows in Nigeria, as most of the attracted investments during the period of the study were market and resource seeking as was the case during the military regime, thereby contributing minimally to the socio-economic development of the country. It is also found that the country placed much emphasis on liberalization and incentives for FDI attraction at the neglect of improving the domestic investment environment. Consequently, poor state of infrastructure, weak institutional capability and insecurity were identified as the major factors seriously hindering the success of Nigeria in exploiting FDI for domestic development. Given the reality of the currency of FDI as a vector of economic globalization and that Nigeria is trailing the line of private-sector-led approach to development, it is recommended that emphasis should be placed on those measures aimed at improving the infrastructural facilities, building solid institutional framework, enhancing skill and technological transfer and coordinating FDI promotion activities by different agencies and at different levels of government.

Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

The Performance of Natural Light by Roof Systems in Cultural Buildings

This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.

The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention

Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.

Description of Reported Foodborne Diseases in Selected Communities within the Greater Accra Region-Ghana: Epidemiological Review of Surveillance Data

Background: Acute gastroenteritis is one of the frequently reported Out-Patient Department (OPD) cases. However, the causative pathogens of these cases are rarely identified at the OPD due to delay in laboratory results or failure to obtain specimens before antibiotics is administered. Method: A retrospective review of surveillance data from the Adentan Municipality, Accra, Ghana that were recorded in the National foodborne disease surveillance system of Ghana, was conducted with the main aim of describing the epidemiology and food practice of cases reported from the Adentan Municipality. The study involved a retrospective review of surveillance data kept on patients who visited health facilities that are involved in foodborne disease surveillance in Ghana, from January 2015 to December 2016. Results: A total of 375 cases were reviewed and these were classified as viral hepatitis (hepatitis A and E), cholera (Vibrio cholerae), dysentery (Shigella sp.), typhoid fever (Salmonella sp.) or gastroenteritis. Cases recorded were all suspected case and the average cases recorded per week was 3. Typhoid fever and dysentery were the two main clinically diagnosed foodborne illnesses. The highest number of cases were observed during the late dry season (Feb to April), which marks the end of the dry season and the beginning of the rainy season. Relatively high number of cases was also observed during the late wet seasons (Jul to Oct) when the rainfall is the heaviest. Home-made food and street vended food were the major sources of suspected etiological food, recording 49.01% and 34.87% of the cases respectively. Conclusion: Majority of cases recorded were classified as gastroenteritis due to the absence of laboratory confirmation. Few cases were classified as typhoid fever and dysentery based on clinical symptoms presented. Patients reporting with foodborne diseases were found to consume home meal and street vended foods as their predominant source of food.

Passenger Flow Characteristics of Seoul Metropolitan Subway Network

Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.

Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Generating a Functional Grammar for Architectural Design from Structural Hierarchy in Combination of Square and Equal Triangle

Islamic culture was accountable for a plethora of development in astronomy and science in the medieval term, and in geometry likewise. Geometric patterns are reputable in a considerable number of cultures, but in the Islamic culture the patterns have specific features that connect the Islamic faith to mathematics. In Islamic art, three fundamental shapes are generated from the circle shape: triangle, square and hexagon. Originating from their quiddity, each of these geometric shapes has its own specific structure. Even though the geometric patterns were generated from such simple forms as the circle and the square, they can be combined, duplicated, interlaced, and arranged in intricate combinations. So in order to explain geometrical interaction principles between square and equal triangle, in the first definition step, all types of their linear forces individually and in the second step, between them, would be illustrated. In this analysis, some angles will be created from intersection of their directions. All angles are categorized to some groups and the mathematical expressions among them are analyzed. Since the most geometric patterns in Islamic art and architecture are based on the repetition of a single motif, the evaluation results which are obtained from a small portion, is attributable to a large-scale domain while the development of infinitely repeating patterns can represent the unchanging laws. Geometric ornamentation in Islamic art offers the possibility of infinite growth and can accommodate the incorporation of other types of architectural layout as well, so the logic and mathematical relationships which have been obtained from this analysis are applicable in designing some architecture layers and developing the plan design.

Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

An Improved K-Means Algorithm for Gene Expression Data Clustering

Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.