Analysis of Supply Side Factors Affecting Bank Financing of Non-Oil Exports in Nigeria

The banking sector poses a lot of problems in Nigeria in general and the non-oil export sector in particular. The banks' lack effectiveness in handling small, medium or long-term credit risk (lack of training of loan officers, lack of information on borrowers and absence of a reliable credit registry) results in non-oil exporters being burdened with high requirements, such as up to three years of financial statements, enough collateral to cover both the loan principal and interest (including a cash deposit that may be up to 30% of the loans' net present value), and to provide every detail of the international trade transaction in question. The stated problems triggered this research. Consequently, information on bank financing of non-oil exports was collected from 100 respondents from the 20 Deposit Money Banks (DMBs) in Nigeria. The data was analysed by the use of descriptive statistics correlation and regression. It is found that, Nigerian banks are participants in the financing of non-oil exports. Despite their participation, the rate of interest for credit extended to non-oil export is usually high, ranging between 15-20%. Small and medium sized non-oil export businesses lack the credit history for banks to judge them as reputable. Banks also consider the non-oil export sector very risky for investment. The banks actually do grant less credit than the exporters may require and therefore are not properly funded by banks. Banks grant very low volume of foreign currency loan in addition to, unfavorable exchange rate at which Naira is exchanged to the Dollar and other currencies in the country. This makes importation of inputs costly and negatively impacted on the non-oil export performance in Nigeria.

Parametric Analysis on Information Technology Adoption and Organizational Efficiency in Northern Nigeria

The adoption and diffusion of Information Technology (IT) is one of the fastest growing trends in organizations operating within Nigeria’s economy. Public and private organizations make huge capital investments in an attempt acquire and adopt the state-of-the-art IT for improving operational efficiency. In this study the level of IT adoption is considered the primary driver of efficiency witnessed by organizations. The research gathered data on the intensity of IT usage, and resultant efficiency increase in the organizations’ operations. The data was analyzed using multiple regression analysis and reveals that high level of IT usage has enhance efficiency of private and public organizations in Northern part of Nigeria with organizations having strategic intent on IT adoption indicating higher efficiency gains.

New Regression Model and I-Kaz Method for Online Cutting Tool Wear Monitoring

This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals using the regression model and I-kaz method. The detection of tool wear was done automatically using the in-house developed regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out on a CNC turning machine Colchester Master Tornado T4 in dry cutting condition, and Kistler 9255B dynamometer was used to measure the cutting force signals, which then stored and displayed in the DasyLab software. The progression of the cutting tool flank wear land (VB) was indicated by the amount of the cutting force generated. Later, the I-kaz was used to analyze all the cutting force signals from beginning of the cut until the rejection stage of the cutting tool. Results of the IKaz analysis were represented by various characteristic of I-kaz 3D coefficient and 3D graphic presentation. The I-kaz 3D coefficient number decreases when the tool wear increases. This method can be used for real time tool wear monitoring.

Analyzing of Public Transport Trip Generation in Developing Countries; A Case Study in Yogyakarta, Indonesia

Yogyakarta, as the capital city of Yogyakarta Province, has important roles in various sectors that require good provision of public transportation system. Ideally, a good transportation system should be able to accommodate the amount of travel demand. This research attempts to develop a trip generation model to predict the number of public transport passenger in Yogyakarta city. The model is built by using multiple linear regression analysis, which establishes relationship between trip number and socioeconomic attributes. The data consist of primary and secondary data. Primary data was collected by conducting household surveys which randomly selected. The resulted model is further applied to evaluate the existing TransJogja, a new Bus Rapid Transit system serves Yogyakarta and surrounding cities, shelters.

Optimization of Microwave-Assisted Extraction of Cherry Laurel (Prunus laurocerasus L.) Fruit Using Response Surface Methodology

Optimization of a microwave-assisted extraction of cherry laurel (Prunus laurocerasus) fruit using methanol was studied. The influence of process parameters (microwave power, plant material-to-solvent ratio and the extraction time) on the extraction efficiency were optimized by using response surface methodology. The predicted maximum yield of extractive substances (41.85 g/100 g fresh plant material) was obtained at microwave power of 600 W and plant material to solvent ratio of 0.2 g/cm3 after 26 minutes of extraction, while a mean value of 40.80±0.41 g/100 g fresh plant material was obtained from laboratory experiments. This proves applicability of the model in predicting optimal extraction conditions with minimal laborious and time consuming. The results indicated that all process parameters were effective on the extraction efficiency, while the most important factor was extraction time. In order to rationalize production the optimal economical condition which gave a large total extract yield with minimal energy and solvent consumption was found.

CART Method for Modeling the Output Power of Copper Bromide Laser

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

High Speed Video Transmission for Telemedicine using ATM Technology

In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.

Faculty Stress at Higher Education: A Study on the Business Schools of Pakistan

Job stress is one of the most important concepts for the today-s corporate as well as institutional world. The current study is conducted to identify the causes of faculty stress at Higher Education in Pakistan. For the purpose, Public & Private Business Schools of Punjab is selected as representative of Pakistan. A sample of 300 faculty members (214 males, 86 females) responded to the survey. Regression analysis shows that the Workload, Student Related issues and Role Conflicts are the major sources contributing significantly towards producing stress. The study also revealed that Private sector faculty members experienced more stress as compared to faculty in Public sector Business Schools. Moreover, females, younger ages, lower designation & low qualification faculty members experience more stress as compared to males, older ages, higher designation and high qualification. The study yield many significant results for the policy makers of Business Institutions.

Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting

this paper presents an auto-regressive network called the Auto-Regressive Multi-Context Recurrent Neural Network (ARMCRN), which forecasts the daily peak load for two large power plant systems. The auto-regressive network is a combination of both recurrent and non-recurrent networks. Weather component variables are the key elements in forecasting because any change in these variables affects the demand of energy load. So the AR-MCRN is used to learn the relationship between past, previous, and future exogenous and endogenous variables. Experimental results show that using the change in weather components and the change that occurred in past load as inputs to the AR-MCRN, rather than the basic weather parameters and past load itself as inputs to the same network, produce higher accuracy of predicted load. Experimental results also show that using exogenous and endogenous variables as inputs is better than using only the exogenous variables as inputs to the network.

Modeling and Identification of Hammerstein System by using Triangular Basis Functions

This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.

Value-Relevance of Accounting Information:Evidence from Iranian Emerging Stock Exchange

This study aims to investigate empirically the valuerelevance of accounting information to domestic investors in Tehran stock exchange from 1999 to 2006. During the present research impacts of two factors, including positive vs. negative earnings and the firm size are considered as well. The authors used earnings per share and annual change of earnings per share as the income statement indices, and book value of equity per share as the balance sheet index. Return and Price models through regression analysis are deployed in order to test the research hypothesis. Results depicted that accounting information is value-relevance to domestic investors in Tehran Stock Exchange according to both studied models. However, income statement information has more value-relevance than the balance sheet information. Furthermore, positive vs. negative earnings and firm size seems to have significant impact on valuerelevance of accounting information.

Use of Multiple Linear Regressions to Evaluate the Influence of O3 and PM10 on Biological Pollutants

Exposure to ambient air pollution has been linked to a number of health outcomes, starting from modest transient changes in the respiratory tract and impaired pulmonary function, continuing to restrict activity/reduce performance and to the increase emergency rooms visits, hospital admissions or mortality. The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, fungal spores and pollen. Considering the potential relevance of crossed effects of nonbiological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants (O3 and PM10) and meteorological parameters on the concentrations of pollen and fungal spores using multiple linear regressions. The data considered in this study were collected in Oporto which is the second largest Portuguese city, located in the North. Daily mean of O3, PM10, pollen and fungal spore concentrations, temperature, relative humidity, precipitation, wind velocity, pollen and fungal spore concentrations, for 2003, 2004 and 2005 were considered. Results showed that the 90th percentile of the adjusted coefficient of determination, P90 (R2aj), of the multiple regressions varied from 0.613 to 0.916 for pollen and from 0.275 to 0.512 for fungal spores. O3 and PM10 showed to have some influence on the biological pollutants. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations. Relative humidity also showed to have some influence on the fungal spore dispersion. Nevertheless, the models for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant can not be, even so, consistent enough.

A Study of Neuro-Fuzzy Inference System for Gross Domestic Product Growth Forecasting

In this paper we present a Adaptive Neuro-Fuzzy System (ANFIS) with inputs the lagged dependent variable for the prediction of Gross domestic Product growth rate in six countries. We compare the results with those of Autoregressive (AR) model. We conclude that the forecasting performance of neuro-fuzzy-system in the out-of-sample period is much more superior and can be a very useful alternative tool used by the national statistical services and the banking and finance industry.

A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions

Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.

The Entrepreneur's General Personality Traits and Technological Developments

Technological newness and innovativeness are important aspects of small firm development, growth and wealth creation. The contribution of the study to entrepreneurship personality research and to technology-related research in entrepreneurship is that the model of the general personality driven technological development was developed and empirically tested. Hypotheses relating the big five personality factors (OCEAN: openness, conscientiousness, extraversion, agreeableness, and neuroticism) and technological developments were tested by using multiple regression analysis on survey data from a sample of 160 entrepreneurs from Slovenia. The model reveals two personality factors, which are predictive of technological developments: openness (positive impact) and neuroticism (negative impact). In addition, a positive impact of firm age on technological developments was found. Other personality factors (conscientiousness, extraversion and agreeableness) of entrepreneurs may not be considered important for their firm technological developments.

Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil

Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.

Robust Regression and its Application in Financial Data Analysis

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Design, Implementation and Analysis of Composite Material Dampers for Turning Operations

This paper introduces a novel design for boring bar with enhanced damping capability. The principle followed in the design phase was to enhance the damping capability minimizing the loss in static stiffness through implementation of composite material interfaces. The newly designed tool has been compared to a conventional tool. The evaluation criteria were the dynamic characteristics, frequency and damping ratio, of the machining system, as well as the surface roughness of the machined workpieces. The use of composite material in the design of damped tool has been demonstrated effective. Furthermore, the autoregressive moving average (ARMA) models presented in this paper take into consideration the interaction between the elastic structure of the machine tool and the cutting process and can therefore be used to characterize the machining system in operational conditions.

Forecasting Malaria Cases in Bujumbura

The focus in this work is to assess which method allows a better forecasting of malaria cases in Bujumbura ( Burundi) when taking into account association between climatic factors and the disease. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in Bujumbura are described and analyzed. We propose a hierarchical approach to achieve our objective. We first fit a Generalized Additive Model to malaria cases to obtain an accurate predictor, which is then used to predict future observations. Various well-known forecasting methods are compared leading to different results. Based on in-sample mean average percentage error (MAPE), the multiplicative exponential smoothing state space model with multiplicative error and seasonality performed better.