A Modified Genetic Based Technique for Solving the Power System State Estimation Problem

Power system state estimation is the process of calculating a reliable estimate of the power system state vector composed of bus voltages' angles and magnitudes from telemetered measurements on the system. This estimate of the state vector provides the description of the system necessary for the operation and security monitoring. Many methods are described in the literature for solving the state estimation problem, the most important of which are the classical weighted least squares method and the nondeterministic genetic based method; however both showed drawbacks. In this paper a modified version of the genetic algorithm power system state estimation is introduced, Sensitivity of the proposed algorithm to genetic operators is discussed, the algorithm is applied to case studies and finally it is compared with the classical weighted least squares method formulation.

A Study of Color Transformation on Website Images for the Color Blind

In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB color space to HSV color space and self-organizing color transformation. The comparative study focuses on criteria based on the ease of use, quality, accuracy and efficiency. The outcome of the study leads to enhancement of website images to meet the color blinds- vision requirements in perceiving image detailed.

Conventional Design and Simulation of an Urban Hybrid Bus

Due to heightened concerns over environmental and economic issues the growing important of air pollution, and the importance of conserving fossil fuel resources in the world, the automotive industry is now forced to produce more fuel efficient, low emission vehicles and new drive system technologies. One of the most promising technologies to receive attention is the hybrid electric vehicle (HEV), which consists of two or more energy sources that supply energy to electric traction motors that in turn drive the wheels. This paper presents the various structures of HEV systems, the basic theoretical knowledge for describing their operation and the general behaviour of the HEV in acceleration, cruise and deceleration phases. The conventional design and sizing of a series HEV is studied. A conventional bus and its series configuration are defined and evaluated using the ADVISOR. In this section the simulation of a standard driving cycle and prediction of its fuel consumption and emissions of the HEV are discussed. Finally the bus performance is investigated to establish whether it can satisfy the performance, fuel consumption and emissions requested. The validity of the simulation has been established by the close conformity between the fuel consumption of the conventional bus reported by the manufacturer to what has achieved from the simulation.

Preparation and Characterization of Self Assembled Gold Nanoparticles on Amino Functionalized SiO2 Dielectric Core

Wet chemistry methods are used to prepare the SiO2/Au nanoshells. The purpose of this research was to synthesize gold coated SiO2 nanoshells for biomedical applications. Tunable nanoshells were prepared by using different colloidal concentrations. The nanoshells are characterized by FTIR, XRD, UV-Vis spectroscopy and atomic force microscopy (AFM). The FTIR results confirmed the functionalization of the surfaces of silica nanoparticles with NH2 terminal groups. A tunable absorption was observed between 470-600 nm with a maximum range of 530-560 nm. Based on the XRD results three main peaks of Au (111), (200) and (220) were identified. Also AFM results showed that the silica core diameter was about 100 nm and the thickness of gold shell about 10 nm.

Determination of Regimes of the Equivalent Generator Based On Projective Geometry: The Generalized Equivalent Generator

Requirements that should be met when determining the regimes of circuits with variable elements are formulated. The interpretation of the variations in the regimes, based on projective geometry, enables adequate expressions for determining and comparing the regimes to be derived. It is proposed to use as the parameters of a generalized equivalent generator of an active two-pole with changeable resistor such load current and voltage which provide the current through this resistor equal to zero.

Scots Pine Needles as Bioindicators in Determining the Aerial Distribution Pattern of Sulphur Emissions around Industrial Plants

In this study, the Scots pine (Pinus sylvestris L.) C needles (i.e. the current-year-needles) were used as bioindicators in determining the aerial distribution pattern of sulphur emissions around industrial point sources at Kemi, Northern Finland. The average sulphur concentration in the C needles was 897 mg/kg (d.w.), with a standard deviation of 118 mg/kg (d.w.) and range 740 – 1350 mg/kg (d.w.). According to results in this study, Scots pine needles (Pinus sylvestris L.) appear to be an ideal bioindicators for identifying atmospheric sulphur pollution derived from industrial plants and can complement the information provided by plant mapping studies around industrial plants.

Different Multimedia Presentation Types and Students' Interpretation Achievement

The main purpose of the study was to determine whether students- interpretation achievement differed with the use of various multimedia presentation types. Four groups of students, text only (T), audio only (A), text and audio (TA), text and image (TI), were arranged and they were presented the same story via different types of multimedia presentations. Inference achievement was measured by a critical thinking inference test. Higher mean scores for the TA group compared to the other three groups were found. Also when compared pairwise, interpretation achievement of the TA group differed significantly from scores of the T and TI groups. These differences were interpreted with the increased cognitive load. Increased cognitive load for the TA group may have invited students to put more effort into comprehending the text, thus resulting in better test scores. Findings of the study can be seen as a sign of the importance of learning situations and learning outcomes in multimedia-supported learning environments and may have practical benefits for instructional designers.

Simulating Dynamics of Thoracolumbar Spine Derived from Life MOD under Haptic Forces

In this paper, the construction of a detailed spine model is presented using the LifeMOD Biomechanics Modeler. The detailed spine model is obtained by refining spine segments in cervical, thoracic and lumbar regions into individual vertebra segments, using bushing elements representing the intervertebral discs, and building various ligamentous soft tissues between vertebrae. In the sagittal plane of the spine, constant force will be applied from the posterior to anterior during simulation to determine dynamic characteristics of the spine. The force magnitude is gradually increased in subsequent simulations. Based on these recorded dynamic properties, graphs of displacement-force relationships will be established in terms of polynomial functions by using the least-squares method and imported into a haptic integrated graphic environment. A thoracolumbar spine model with complex geometry of vertebrae, which is digitized from a resin spine prototype, will be utilized in this environment. By using the haptic technique, surgeons can touch as well as apply forces to the spine model through haptic devices to observe the locomotion of the spine which is computed from the displacement-force relationship graphs. This current study provides a preliminary picture of our ongoing work towards building and simulating bio-fidelity scoliotic spine models in a haptic integrated graphic environment whose dynamic properties are obtained from LifeMOD. These models can be helpful for surgeons to examine kinematic behaviors of scoliotic spines and to propose possible surgical plans before spine correction operations.

Forming the Differential-Algebraic Model of Radial Power Systems for Simulation of both Transient and Steady-State Conditions

This paper presents a procedure of forming the mathematical model of radial electric power systems for simulation of both transient and steady-state conditions. The research idea has been based on nodal voltages technique and on differentiation of Kirchhoff's current law (KCL) applied to each non-reference node of the radial system, the result of which the nodal voltages has been calculated by solving a system of algebraic equations. Currents of the electric power system components have been determined by solving their respective differential equations. Transforming the three-phase coordinate system into Cartesian coordinate system in the model decreased the overall number of equations by one third. The use of Cartesian coordinate system does not ignore the DC component during transient conditions, but restricts the model's implementation for symmetrical modes of operation only. An example of the input data for a four-bus radial electric power system has been calculated.

Individual Configuration of Production Control to Suit Requirements

The logistical requirements placed on industrial manufacturing companies are steadily increasing. In order to meet those requirements, a consistent and efficient concept is necessary for production control. Set up properly, production control offers considerable potential with respect to achieving the logistical targets. As experience with the many production control methods already in existence and their compatibility is, however, often inadequate, this article describes a systematic approach to the configuration of production control based on the Lödding model. This model enables production control to be set up individually to suit a company and the requirements. It therefore permits today-s demands regarding logistical performance to be met.

Valorization of Lignocellulosic Wastes – Evaluation of Its Toxicity When Used in Adsorption Systems

The agriculture lignocellulosic by-products are receiving increased attention, namely in the search for filter materials that retain contaminants from water. These by-products, specifically almond and hazelnut shells are abundant in Portugal once almond and hazelnuts production is a local important activity. Hazelnut and almond shells have as main constituents lignin, cellulose and hemicelluloses, water soluble extractives and tannins. Along the adsorption of heavy metals from contaminated waters, water soluble compounds can leach from shells and have a negative impact in the environment. Usually, the chemical characterization of treated water by itself may not show environmental impact caused by the discharges when parameters obey to legal quality standards for water. Only biological systems can detect the toxic effects of the water constituents. Therefore, the evaluation of toxicity by biological tests is very important when deciding the suitability for safe water discharge or for irrigation applications. The main purpose of the present work was to assess the potential impacts of waters after been treated for heavy metal removal by hazelnut and almond shells adsorption systems, with short term acute toxicity tests. To conduct the study, water at pH 6 with 25 mg.L-1 of lead, was treated with 10 g of shell per litre of wastewater, for 24 hours. This procedure was followed for each bark. Afterwards the water was collected for toxicological assays; namely bacterial resistance, seed germination, Lemna minor L. test and plant grow. The effect in isolated bacteria strains was determined by disc diffusion method and the germination index of seed was evaluated using lettuce, with temperature and humidity germination control for 7 days. For aquatic higher organism, Lemnas were used with 4 days contact time with shell solutions, in controlled light and temperature. For terrestrial higher plants, biomass production was evaluated after 14 days of tomato germination had occurred in soil, with controlled humidity, light and temperature. Toxicity tests of water treated with shells revealed in some extent effects in the tested organisms, with the test assays showing a close behaviour as the control, leading to the conclusion that its further utilization may not be considered to create a serious risk to the environment.

Solid Circulation Rate and Gas Leakage Measurements in an Interconnected Bubbling Fluidized Beds

Two-interconnected fluidized bed systems are widely used in various processes such as Fisher-Tropsch, hot gas desulfurization, CO2 capture-regeneration with dry sorbent, chemical-looping combustion, sorption enhanced steam methane reforming, chemical-looping hydrogen generation system, and so on. However, most of two-interconnected fluidized beds systems require riser and/or pneumatic transport line for solid conveying and loopseals or seal-pots for gas sealing, recirculation of solids to the riser, and maintaining of pressure balance. The riser (transport bed) is operated at the high velocity fluidization condition and residence times of gas and solid in the riser are very short. If the reaction rate of catalyst or sorbent is slow, the riser can not ensure sufficient contact time between gas and solid and we have to use two bubbling beds for each reaction to ensure sufficient contact time. In this case, additional riser must be installed for solid circulation. Consequently, conventional two-interconnected fluidized bed systems are very complex, large, and difficult to operate. To solve these problems, a novel two-interconnected fluidized bed system has been developed. This system has two bubbling beds, solid injection nozzles, solid conveying lines, and downcomers. In this study, effects of operating variables on solid circulation rate, gas leakage between two beds have been investigated in a cold mode two-interconnected fluidized bed system. Moreover, long-term operation of continuous solid circulation up to 60 hours has been performed to check feasibility of stable operation.

Identifying and Prioritizing Factors Affecting Consumer Behavior Based on Product Value

Nowadays, without the awareness of consumer behavior and correct understanding of it, it is not possible for organizations to take appropriate measures to meet the consumer needs and demands. The aim of this paper is the identification and prioritization of the factors affecting the consumer behavior based on the product value. The population of the study includes all the consumers of furniture producing firms in East Azarbaijan province, Iran. The research sample includes 93 people selected by the sampling formula in unlimited population. The data collection instrument was a questionnaire, the validity of which was confirmed through face validity and the reliability of which was determined, using Cronbach's alpha coefficient. The Kolmogorov-Smironov test was used to test data normality, the t-test for identification of factors affecting the product value, and Friedman test for prioritizing the factors. The results show that quality, satisfaction, styling, price, finishing operation, performance, safety, worth, shape, use, and excellence are placed from 1 to 11 priorities, respectively.

Importance of Public Communication Campaigns and Art Activities in Social Education

Universities have an important role in social education in many aspects. In terms of creating awareness and convincing public about social issues, universities take a leading position for public. The best way to provide public support for social education is to develop public communication campaigns. The aim of this study is to present a public communication model which will be guided in social education practices. The study titled “Importance of public communication campaigns and art activities in Social Education “is based on the following topics: Effects of public communication campaigns on social education, Public relations techniques for education, communication strategies, Steps of public relations campaigns in social education, making persuasive messages for public communication campaigns, developing artistic messages and organizing art activities in social education. In addition to these topics, media planning for social education, forming a team as campaign managers, dialogues with opinion leaders in education and preparing creative communication models for social education will be taken into consideration. This study also aims to criticize social education Case studies in Turkey. At the same time, some communicative methods and principles will be given in the light of communication campaigns within the context of this notice.

Economic Returns of Using Brewery`s Spent Grain in Animal Feed

UK breweries generate extensive by products in the form of spent grain, slurry and yeast. Much of the spent grain is produced by large breweries and processed in bulk for animal feed. Spent brewery grains contain up to 20% protein dry weight and up to 60% fiber and are useful additions to animal feed. Bulk processing is economic and allows spent grain to be sold so providing an income to the brewery. A proportion of spent grain, however, is produced by small local breweries and is more variably distributed to farms or other users using intermittent collection methods. Such use is much less economic and may incur losses if not carefully assessed for transport costs. This study reports an economic returns of using wet brewery spent grain (WBSG) in animal feed using the Co-product Optimizer Decision Evaluator model (Cattle CODE) developed by the University of Nebraska to predict performance and economic returns when byproducts are fed to finishing cattle. The results indicated that distance from brewery to farm had a significantly greater effect on the economics of use of small brewery spent grain and that alternative uses than cattle feed may be important to develop.

Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.

The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject

Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.

Effect of Oral Administration of “Gadagi“ Tea on Liver Function in Rats

Effect of oral administration of “Gadagi" tea on liver function was assessed on 50 healthy male albino rats which were grouped and administered with different doses(mg/kg) i.e low dose (380mg/kg, 415mg/kg, 365mg/kg, 315mg/kg for “sak", “sada" and “magani" respectively), standard dose ( 760mg/kg, 830mg/kg, 730mg/kg for “sak-, “sada" and “magani" respectively) and high dose (1500mg/kg, 1700mg/kg and 1460mg/kg for “sak--,"sada" and “magani" groups respectively) for a period of four weeks. Animals that were not administered with the tea constituted the control group. At the end of fourth week, the animals were sacrificed and their serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP), albumin (ALB), and globulins (GLO) were determined. Mean serum ALT and ALP activities were significantly higher (P

Principal Type of Water Responsible for Damage of Concrete Repeated Freeze-Thaw Cycles

The first and basic cause of the failure of concrete is repeated freezing (thawing) of moisture contained in the pores, microcracks, and cavities of the concrete. On transition to ice, water existing in the free state in cracks increases in volume, expanding the recess in which freezing occurs. A reduction in strength below the initial value is to be expected and further cycle of freezing and thawing have a further marked effect. By using some experimental parameters like nuclear magnetic resonance variation (NMR), enthalpy-temperature (or heat capacity) variation, we can resolve between the various water states and their effect on concrete properties during cooling through the freezing transition temperature range. The main objective of this paper is to describe the principal type of water responsible for the reduction in strength and structural damage (frost damage) of concrete following repeated freeze –thaw cycles. Some experimental work was carried out at the institute of cryogenics to determine what happens to water in concrete during the freezing transition. 

Swelling Behavior and Cytotoxicity of Maleic Acid Grafted Chitosan

Chitosan is an attractive polysaccharide obtained by deacetylation of an abundant natural biopolymer called chitin. Chitin and chitosan are excellent materials. To improve the potential of chitin and chitosan modification is needed. In the present study, grafting of maleic acid on to chitosan by cerium ammonium nitrate in acetic acid solution was investigated with use of a microwave and reflux system. The grafted chitosan was characterized by using a Fourier-transform infrared spectrometry. The solubility and swelling behavior of grafted chitosans were determined in acetate buffer (pH 3.6), citrophosphate buffer (pH 5.6 and pH 7.0), and boric buffer (pH 9.2) solutions. The sample obtained by microwave system with use of a chitosan/maleic anhydride/ceric ammonium nitrate 0.2/3.922/0.99 gram of raw material within 30 minute showed the maximum swelling ratio (13.6) in boric buffer solution.