Matrix Based Synthesis of EXOR dominated Combinational Logic for Low Power

This paper discusses a new, systematic approach to the synthesis of a NP-hard class of non-regenerative Boolean networks, described by FON[FOFF]={mi}[{Mi}], where for every mj[Mj]∈{mi}[{Mi}], there exists another mk[Mk]∈{mi}[{Mi}], such that their Hamming distance HD(mj, mk)=HD(Mj, Mk)=O(n), (where 'n' represents the number of distinct primary inputs). The method automatically ensures exact minimization for certain important selfdual functions with 2n-1 points in its one-set. The elements meant for grouping are determined from a newly proposed weighted incidence matrix. Then the binary value corresponding to the candidate pair is correlated with the proposed binary value matrix to enable direct synthesis. We recommend algebraic factorization operations as a post processing step to enable reduction in literal count. The algorithm can be implemented in any high level language and achieves best cost optimization for the problem dealt with, irrespective of the number of inputs. For other cases, the method is iterated to subsequently reduce it to a problem of O(n-1), O(n-2),.... and then solved. In addition, it leads to optimal results for problems exhibiting higher degree of adjacency, with a different interpretation of the heuristic, and the results are comparable with other methods. In terms of literal cost, at the technology independent stage, the circuits synthesized using our algorithm enabled net savings over AOI (AND-OR-Invert) logic, AND-EXOR logic (EXOR Sum-of- Products or ESOP forms) and AND-OR-EXOR logic by 45.57%, 41.78% and 41.78% respectively for the various problems. Circuit level simulations were performed for a wide variety of case studies at 3.3V and 2.5V supply to validate the performance of the proposed method and the quality of the resulting synthesized circuits at two different voltage corners. Power estimation was carried out for a 0.35micron TSMC CMOS process technology. In comparison with AOI logic, the proposed method enabled mean savings in power by 42.46%. With respect to AND-EXOR logic, the proposed method yielded power savings to the tune of 31.88%, while in comparison with AND-OR-EXOR level networks; average power savings of 33.23% was obtained.

Challenges of Irrigation Water Supply in Croplands of Arid Regions and their Environmental Consequences – A Case Study in the Dez and Moghan Command Areas of Iran

Renewable water resources are crucial production variables in arid and semi-arid regions where intensive agriculture is practiced to meet ever-increasing demand for food and fiber. This is crucial for the Dez and Moghan command areas where water delivery problems and adverse environmental issues are widespread. This paper aims to identify major problems areas using on-farm surveys of 200 farmers, agricultural extensionists and water suppliers which was complemented by secondary data and field observations during 2010- 2011 cultivating season. The SPSS package was used to analyze and synthesis data. Results indicated inappropriate canal operations in both schemes, though there was no unanimity about the underlying causes. Inequitable and inflexible distribution was found to be rooted in deficient hydraulic structures particularly in the main and secondary canals. The inadequacy and inflexibility of water scheduling regime was the underlying causes of recurring pest and disease spread which often led to the decline of crop yield and quality, although these were not disputed, the water suppliers were not prepared to link with the deficiencies in the operation of the main and secondary canals. They rather attributed these to the prevailing salinity; alkalinity, water table fluctuations and leaching of the valuable agro-chemical inputs from the plants- route zone with farreaching consequences. Examples of these include the pollution of ground and surface resources due to over-irrigation at the farm level which falls under the growers- own responsibility. Poor irrigation efficiency and adverse environmental problems were attributed to deficient and outdated farming practices that were in turn rooted in poor extension programs and irrational water charges.

Characterization of Fabricated A 384.1-MgO Based Metal Matrix Composite and Optimization of Tensile Strength using Taguchi Techniques

The present work consecutively on synthesis and characterization of composites, Al/Al alloy A 384.1 as matrix in which the main ingredient as Al/Al-5% MgO alloy based metal matrix composite. As practical implications the low cost processing route for the fabrication of Al alloy A 384.1 and operational difficulties of presently available manufacturing processes based in liquid manipulation methods. As all new developments, complete understanding of the influence of processing variables upon the final quality of the product. And the composite is applied comprehensively to the acquaintance for achieving superiority of information concerning the specific heat measurement of a material through the aid of thermographs. Products are evaluated concerning relative particle size and mechanical behavior under tensile strength. Furthermore, Taguchi technique was employed to examine the experimental optimum results are achieved, owing to effectiveness of this approach.

Application of the Neural Network to the Synthesis of Vertical Dipole Antenna over Imperfect Ground

In this paper, we propose to study the synthesis of the vertical dipole antenna over imperfect ground. The synthesis implementation-s method for this type of antenna permits to approach the appropriated radiance-s diagram. The used approach is based on neural network. Our main contribution in this paper is the extension of a synthesis model of this vertical dipole antenna over imperfect ground.

Fast and Efficient On-Chip Interconnection Modeling for High Speed VLSI Systems

Timing driven physical design, synthesis, and optimization tools need efficient closed-form delay models for estimating the delay associated with each net in an integrated circuit (IC) design. The total number of nets in a modern IC design has increased dramatically and exceeded millions. Therefore efficient modeling of interconnection is needed for high speed IC-s. This paper presents closed–form expressions for RC and RLC interconnection trees in current mode signaling, which can be implemented in VLSI design tool. These analytical model expressions can be used for accurate calculation of delay after the design clock tree has been laid out and the design is fully routed. Evaluation of these analytical models is several orders of magnitude faster than simulation using SPICE.

Prediction Method of Extenics Theory for Assessment of Bearing Capacity of Lateritic Soil Foundation

Base on extenics theory, the statistical physical and mechanical properties from laboratory experiments are used to evaluate the bearing capacity of lateritic soil foundation. The properties include water content, bulk density, liquid limit, cohesion, and so on. The matter-element and the dependent function are defined. Then the synthesis dependent degree and the final grade index are calculated. The results show that predicted outcomes can be matched with the in-situ test data, and a evaluate grade associate with bearing capacity can be deduced. The results provide guidance to assess and determine the bearing capacity grade of lateritic soil foundation.

Synthesis of Aragonite Superstructure from Steelmaking Slag via Indirect CO2 Mineral Sequestration

Using steelmaking slag as a raw material, aragonite superstructure product had been synthesized via an indirect CO2 mineral sequestration rout. It mainly involved two separate steps, in which the element of calcium is first selectively leached from steelmaking slag by a novel leaching media consisting of organic solvent Tributyl phosphate (TBP), acetic acid, and ultra-purity water, followed by enhanced carbonation in a separate step for aragonite superstructure production as well as efficiency recovery of leaching media. Based on the different leaching medium employed in the steelmaking slag leaching process, two typical products were collected from the enhanced carbonation step. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. It reveals that the needle-like aragonite crystals self-organized into aragonite superstructure particles including aragonite microspheres as well as dumbbell-like spherical particles, can be obtained from the steelmaking slag with the purity over 99%.

Synthesis and Applications of Heteronanostructured ZnO Nanowires Array

ZnO heteronanostructured nanowires arrays have been fabricated by low temperature solution method. Various heterostructures were synthesized including CdS/ZnO, CdSe/CdS/ZnO nanowires and Co3O4/ZnO, ZnO/SiC nanowires. These multifunctional heterostructure nanowires showed important applications in photocatalysts, sensors, wettability control and solar energy conversion.

Cloning and Expression of D-Threonine Aldolase from Ensifer arboris NBRC100383

D-erythro-cyclohexylserine (D chiral unnatural β-hydroxy amino acid expected for the synthesis of drug for AIDS treatment. To develop a continuous bioconversion system with whole cell biocatalyst of D-threonine aldolase (D genes for the D-erythro-CHS production, D-threonine aldolase gene was amplified from Ensifer arboris 100383 by direct PCR amplication using two degenerated oligonucleotide primers designed based on genomic sequence of Shinorhizobium meliloti Sequence analysis of the cloned DNA fragment revealed one open-reading frame of 1059 bp and 386 amino acids. This putative D-TA gene was cloned into NdeI and EcoRI (pEnsi His-tag sequence or BamHI (pEnsi-DTA[2]) sequence of the pET21(a) vector. The expression level of the cloned gene was extremely overexpressed by E. coli BL21(DE3) transformed with pEnsi-DTA[1] compared to E. coli BL21(DE3) transformed with pEnsi-DTA[2]. When the cells expressing the wild used for D-TA enzyme activity, 12 mM glycine was successfully detected in HPLC analysis. Moreover, the whole cells harbouring the recombinant D-TA was able to synthesize D-erythro of 0.6 mg/ml in a batch reaction.

Online Collaborative Learning System Using Speech Technology

A Web-based learning tool, the Learn IN Context (LINC) system, designed and being used in some institution-s courses in mixed-mode learning, is presented in this paper. This mode combines face-to-face and distance approaches to education. LINC can achieve both collaborative and competitive learning. In order to provide both learners and tutors with a more natural way to interact with e-learning applications, a conversational interface has been included in LINC. Hence, the components and essential features of LINC+, the voice enhanced version of LINC, are described. We report evaluation experiments of LINC/LINC+ in a real use context of a computer programming course taught at the Université de Moncton (Canada). The findings show that when the learning material is delivered in the form of a collaborative and voice-enabled presentation, the majority of learners seem to be satisfied with this new media, and confirm that it does not negatively affect their cognitive load.

Multi-models Approach for Describing and Verifying Constraints Based Interactive Systems

The requirements analysis, modeling, and simulation have consistently been one of the main challenges during the development of complex systems. The scenarios and the state machines are two successful models to describe the behavior of an interactive system. The scenarios represent examples of system execution in the form of sequences of messages exchanged between objects and are a partial view of the system. In contrast, state machines can represent the overall system behavior. The automation of processing scenarios in the state machines provide some answers to various problems such as system behavior validation and scenarios consistency checking. In this paper, we propose a method for translating scenarios in state machines represented by Discreet EVent Specification and procedure to detect implied scenarios. Each induced DEVS model represents the behavior of an object of the system. The global system behavior is described by coupling the atomic DEVS models and validated through simulation. We improve the validation process with integrating formal methods to eliminate logical inconsistencies in the global model. For that end, we use the Z notation.

Preparing Project Managers to Achieve Project Success - Human Management Perspective

The evolution in project management was triggered by the changes in management philosophy and practices in order to maintain competitive advantage and continuous success in the field. The purpose of this paper is to highlight the practicality of cognitive style and unlearning approach in influencing the achievement of project success by project managers. It introduces the concept of planning, knowing and creating style from cognitive style field in the light of achieving time, cost, quality and stakeholders appreciation in project success context. Further it takes up a discussion of the unlearning approach as a moderator in enhancing the relationship between cognitive style and project success. The paper bases itself on literature review from established disciplines like psychology, sociology and philosophy regarding cognitive style, unlearning and project success in general. The analysis and synthesis of literature in the subject area a conceptual paper is utilized as the basis of future research to form a comprehensive framework for project managers in enhancing the project management competency.

Biosynthesis and In vitro Studies of Silver Bionanoparticles Synthesized from Aspergillusspecies and its Antimicrobial Activity against Multi Drug Resistant Clinical Isolates

Antimicrobial resistant is becoming a major factor in virtually all hospital acquired infection may soon untreatable is a serious public health problem. These concerns have led to major research effort to discover alternative strategies for the treatment of bacterial infection. Nanobiotehnology is an upcoming and fast developing field with potential application for human welfare. An important area of nanotechnology for development of reliable and environmental friendly process for synthesis of nanoscale particles through biological systems In the present studies are reported on the use of fungal strain Aspergillus species for the extracellular synthesis of bionanoparticles from 1 mM silver nitrate (AgNO3) solution. The report would be focused on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Microorganisms. The bio-reduction of the Ag+ ions in the solution would be monitored in the aqueous component and the spectrum of the solution would measure through UV-visible spectrophotometer The bionanoscale particles were further characterized by Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR) and Thin layer chromatography. The synthesized bionanoscale particle showed a maximum absorption at 385 nm in the visible region. Atomic Force Microscopy investigation of silver bionanoparticles identified that they ranged in the size of 250 nm - 680 nm; the work analyzed the antimicrobial efficacy of the silver bionanoparticles against various multi drug resistant clinical isolates. The present Study would be emphasizing on the applicability to synthesize the metallic nanostructures and to understand the biochemical and molecular mechanism of nanoparticles formation by the cell filtrate in order to achieve better control over size and polydispersity of the nanoparticles. This would help to develop nanomedicine against various multi drug resistant human pathogens.

Synthesis of Logic Circuits Using Fractional-Order Dynamic Fitness Functions

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Wound Healing Effect of Ocimum sanctum Leaves Extract in Diabetic Rats

Delayed wound healing in diabetes is primarily associated with hyperglycemia, over-expression of inflammatory marker, oxidative stress and delayed collagen synthesis. This unmanaged wound is producing high economic burden on the society. Thus research is required to develop new and effective treatment strategies to deal with this emerging issue. Our present study incorporates the evaluation of wound healing effects of 50% ethanol extract of Ocimum sanctum (OSE) in streptozotocin (45mg/kg)-induced diabetic rats with concurrent wound ulcer. The animals showing diabetes (Blood glucose level >140 and

Synthesis of Sterile and Pyrogen Free Biogenic Magnetic Nanoparticles: Biotechnological Potential of Magnetotactic Bacteria for Production of Nanomaterials

Today, biogenic magnetite nanoparticles among magnetic nanoparticles have unique attracted attention because of their magnetic characteristics and potential applications in various fields such as therapeutic and diagnostic. A well known example of these biogenic nanoparticles is magnetosomes of magnetotactic bacteria. In this research, we used two different types of technique for the isolation and purification of magnetosome nanoparticles from the isolated magnetotactic bacterial cells, heat-alkaline treatment and sonication. Also we evaluated pyrogen content and sterility of synthesized the isolated individual magnetosome by the Limulus Amoebocyte Lysate test and direct impedimetric method respectively.

Size Controlled Synthesis and Photocatalytic Activity of Anatase TiO2 Hollow Microspheres

Titanium oxide hollow microspheres were synthesized from organic precursor titanium tetraisopropoxide (TTIP) using continuous spray pyrolysis reactor. Effects of precursor concentration, applied voltage and annealing have been investigated. It was observed that the annealing of the as-synthesized TiO2 hollow microspheres at 2500C, which had an average external diameter of 200 nm, leads to an increase in the size and also more spherical shape. The precursor concentration was found to have a direct impact on the size of the microspheres, which is also evident in the absorption spectrum. The as-prepared TiO2 hollow microspheres exhibited good photocatalytic activity for the degradation of MO.

Investigation of Syngas Production from Waste Gas and Ratio Adjustment using a Fischer-Tropsch Synthesis Reactor

In this study, a reformer model simulation to use refinery (Farashband refinery, Iran) waste natural gas. In the petroleum and allied sectors where natural gas is being encountered (in form of associated gas) without prior preparation for its positive use, its combustion (which takes place in flares, an equipment through which they are being disposed) has become a great problem because of its associated environmental problems in form of gaseous emission. The proposed model is used to product syngas from waste natural gas. A detailed steady model described by a set of ordinary differential and algebraic equations was developed to predict the behavior of the overall process. The proposed steady reactor model was validated against process data of a reformer synthesis plant recorded and a good agreement was achieved. H2/CO ratio has important effect on Fischer- Tropsch synthesis reactor product and we try to achieve this parameter with best designing reformer reactor. We study different kind of reformer reactors and then select auto thermal reforming process of natural gas in a fixed bed reformer that adjustment H2/CO ratio with CO2 and H2O injection. Finally a strategy was proposed for prevention of extra natural gas to atmosphere.

Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet

In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.

Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method

Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.