Design and Performance Analysis of a Supersonic Diffuser for Plasma Wing Tunnel

Plasma Wind Tunnels (PWT) are extensively used for screening and qualification of re-entry Thermel Protection System (TPS) materials. Proper design of a supersonic diffuser for plasma wind tunnel is of importance for achieving good pressurerecovery (thereby reducing vacuum pumping requirement & run time costs) and isolating downstream stream fluctuations from propagating costs) and isolating downstream stream fluctuationnts the details of a rapid design methodology successfully employed for designing supersonic diffuser for high power (several megawatts)plasma wind tunnels and numerical performance analysis of a diffuser configuration designed for one megawatt power rated plasma wind tunnel(enthalpy ~ 30 MJ/kg) using FLUENT 6.3® solver for different diffuser operating sub-atmospheric back-pressures.

Model Parameters Estimating on Lyman–Kutcher–Burman Normal Tissue Complication Probability for Xerostomia on Head and Neck Cancer

The purpose of this study is to derive parameters estimating for the Lyman–Kutcher–Burman (LKB) normal tissue complication probability (NTCP) model using analysis of scintigraphy assessments and quality of life (QoL) measurement questionnaires for the parotid gland (xerostomia). In total, 31 patients with head-and-neck (HN) cancer were enrolled. Salivary excretion factor (SEF) and EORTC QLQ-H&N35 questionnaires datasets are used for the NTCP modeling to describe the incidence of grade 4 xerostomia. Assuming that n= 1, NTCP fitted parameters are given as TD50= 43.6 Gy, m= 0.18 in SEF analysis, and as TD50= 44.1 Gy, m= 0.11 in QoL measurements, respectively. SEF and QoL datasets can validate the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) guidelines well, resulting in NPV-s of 100% for the both datasets and suggests that the QUANTEC 25/20Gy gland-spared guidelines are suitable for clinical used for the HN cohort to effectively avoid xerostomia.

Time Domain and Frequency Domain Analyses of Measured Metocean Data for Malaysian Waters

Data of wave height and wind speed were collected from three existing oil fields in South China Sea – offshore Peninsular Malaysia, Sarawak and Sabah regions. Extreme values and other significant data were employed for analysis. The data were recorded from 1999 until 2008. The results show that offshore structures are susceptible to unacceptable motions initiated by wind and waves with worst structural impacts caused by extreme wave heights. To protect offshore structures from damage, there is a need to quantify descriptive statistics and determine spectra envelope of wind speed and wave height, and to ascertain the frequency content of each spectrum for offshore structures in the South China Sea shallow waters using measured time series. The results indicate that the process is nonstationary; it is converted to stationary process by first differencing the time series. For descriptive statistical analysis, both wind speed and wave height have significant influence on the offshore structure during the northeast monsoon with high mean wind speed of 13.5195 knots ( = 6.3566 knots) and the high mean wave height of 2.3597 m ( = 0.8690 m). Through observation of the spectra, there is no clear dominant peak and the peaks fluctuate randomly. Each wind speed spectrum and wave height spectrum has its individual identifiable pattern. The wind speed spectrum tends to grow gradually at the lower frequency range and increasing till it doubles at the higher frequency range with the mean peak frequency range of 0.4104 Hz to 0.4721 Hz, while the wave height tends to grow drastically at the low frequency range, which then fluctuates and decreases slightly at the high frequency range with the mean peak frequency range of 0.2911 Hz to 0.3425 Hz.

Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing

Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure.

The Portrayal of Muslim Militants "Southern Bandits" in Thai Newspapers

This paper examines the depiction of Muslim militants in Thai newspapers in 2004. Stuart Hall-s “representation" and “public idioms" are used as theoretical frameworks. Critical Discourse Analysis is employed as a methodology to examine 240 news articles from two leading Thai language newspapers. The results show that the militants are usually labeled as “southern bandits." This suggests that they are just a culprit of the violence in the deep south of Thailand. They are usually described as people who cause turbulence. Consequently, the military have to get rid of them. However, other aspects of the groups such as their political agenda or the failures of the Thai state in dealing with the Malay Muslims were not mention in the news stories. In the time of violence, the researcher argues that this kind of newspaper coverage may help perpetuate the discourse of Malay Muslim, instead of providing fuller picture of the ongoing conflicts.

Design and Fabrication of a Column-Climber Robot (Koala Robot)

This paper proposes a robot able to climb Columns. This robot is not dependent on the diameter and material of the columns. Some climbing robots have been designed up to now but Koala robot was designed and fabricated for climbing columns exclusively. Simple kinematics of climbing in the nature inspired us to design this robot. We used two linear mechanisms to grip the column. The gripper consists of a DC motor and a power screw mechanism with a linear bushing as a guide. This mechanism provides enough force to grip the column. In addition we needed an actuator for climbing the column; hence, two pneumatic jacks were used. All the mechanical parts were designed according to the exerted forces and operational condition. The prototype can be simply installed and controlled on the column by an inexperienced operator. This robot is intended for inspection and surveillance of pipes in oil industries and power poles in electric industries.

Stabilization of a New Configurable Two- Wheeled Machine Using a PD-PID and a Hybrid FL Control Strategies: A Comparative Study

A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.

2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.

The Impacts of Food Safety Standards on China Export of Vegetables and Fruits

Participation in global trade means that Chinas vegetables and fruits industry faces international food safety standards and increased scrutiny worldwide. The objectives of this paper were to investigate how existing food safety standards and regulations in the importing countries impact the export of vegetables and fruits from China. This paper discussed the current and historical situations of Chinas vegetables and fruits export from 1996 to 2010, analyzed the Maximum Residual Limit (MRL) standards of pesticides imposed by importing countries, quantitatively estimated the impacts of food safety standards on Chinas vegetables and fruits export based on a gravity model. The results showed that although transportation distance between trade partners and tariff rates on vegetables and fruits were still the importantly resistant factors for China export, vegetables and fruits export was sensitive to the number of regulated pesticides, the strictness, and the level of food safety standards imposed by importing countries, which showed a significant trade flow effect, stricter food safety standards, increased number of regulated pesticides significantly inhibit China export of vegetables and fruits. Moreover, Chinas food safety standards also showed a significantly effect on vegetables and fruits export, which inhibited export to some extent. KeywordsFood safety standards, MRL, Vegetables, Fruits, Export.

Transcritical CO2 Heat Pump Simulation Model and Validation for Simultaneous Cooling and Heating

In the present study, a steady-state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump system for simultaneous water cooling and heating. Both the evaporator (including both two-phase and superheated zone) and gas cooler models consider the highly variable heat transfer characteristics of CO2 and pressure drop. The numerical simulation model of transcritical CO2 heat pump has been validated by test data obtained from experiments on the heat pump prototype. Comparison between the test results and the model prediction for system COP variation with compressor discharge pressure shows a modest agreement with a maximum deviation of 15% and the trends are fairly similar. Comparison for other operating parameters also shows fairly similar deviation between the test results and the model prediction. Finally, the simulation results are presented to study the effects of operating parameters such as, temperature of heat exchanger fluid at the inlet, discharge pressure, compressor speed on system performance of CO2 heat pump, suitable in a dairy plant where simultaneous cooling at 4oC and heating at 73oC are required. Results show that good heat transfer properties of CO2 for both two-phase and supercritical region and efficient compression process contribute a lot for high system COPs.

An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions

This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers.

A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System

This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.

Translator Design to Model Cpp Files

The most reliable and accurate description of the actual behavior of a software system is its source code. However, not all questions about the system can be answered directly by resorting to this repository of information. What the reverse engineering methodology aims at is the extraction of abstract, goal-oriented “views" of the system, able to summarize relevant properties of the computation performed by the program. While concentrating on reverse engineering we had modeled the C++ files by designing the translator.

Integration and Selectivity in Open Innovation:An Empirical Analysis in SMEs

The company-s ability to draw on a range of external sources to meet their needs for innovation, has been termed 'open innovation' (OI). Very few empirical analyses have been conducted on Small and Medium Enterprises (SMEs) to the extent that they describe and understand the characteristics and implications of this new paradigm. The study's objective is to identify and characterize different modes of OI, (considering innovation process phases and the variety and breadth of the collaboration), determinants, barriers and motivations in SMEs. Therefore a survey was carried out among Italian manufacturing firms and a database of 105 companies was obtained. With regard to data elaboration, a factorial and cluster analysis has been conducted and three different OI modes have emerged: selective low open, unselective open upstream, and mid- partners integrated open. The different behaviours of the three clusters in terms of determinants factors, performance, firm-s technology intensity, barriers and motivations have been analyzed and discussed.

A Comparative Study on Different Approaches to Evaluate Ship Equilibrium Point

The aim of this paper is to present a comparative study on two different methods for the evaluation of the equilibrium point of a ship, core issue for designing an On Board Stability System (OBSS) module that, starting from geometry information of a ship hull, described by a discrete model in a standard format, and the distribution of all weights onboard calculates the ship floating conditions (in draught, heel and trim).

Parallel Computation in Hypersonic Aerodynamic Heating Problem

A parallel computational fluid dynamics code has been developed for the study of aerodynamic heating problem in hypersonic flows. The code employs the 3D Navier-Stokes equations as the basic governing equations to simulate the laminar hypersonic flow. The cell centered finite volume method based on structured grid is applied for spatial discretization. The AUSMPW+ scheme is used for the inviscid fluxes, and the MUSCL approach is used for higher order spatial accuracy. The implicit LU-SGS scheme is applied for time integration to accelerate the convergence of computations in steady flows. A parallel programming method based on MPI is employed to shorten the computing time. The validity of the code is demonstrated by comparing the numerical calculation result with the experimental data of a hypersonic flow field around a blunt body.

Using Degree of Adaptive (DOA) Model for Partner Selection in Supply Chain

In order to reduce cost, increase quality, and for timely supplying production systems has considerably taken the advantages of supply chain management and these advantages are also competitive. Selection of appropriate supplier has an important role in improvement and efficiency of systems. The models of supplier selection which have already been used by researchers have considered selection one or more suppliers from potential suppliers but in this paper selecting one supplier as partner from one supplier that have minimum one period supplying to buyer is considered. This paper presents a conceptual model for partner selection and application of Degree of Adoptive (DOA) model for final selection. The attributes weight in this model is prepared through AHP model. After making the descriptive model, determining the attributes and measuring the parameters of the adaptive is examined in an auto industry of Iran(Zagross Khodro co.) and results are presented.

An Efficient Hardware Implementation of Extended and Fast Physical Addressing in Microprocessor-Based Systems Using Programmable Logic

This paper describes an efficient hardware implementation of a new technique for interfacing the data exchange between the microprocessor-based systems and the external devices. This technique, based on the use of software/hardware system and a reduced physical address, enlarges the interfacing capacity of the microprocessor-based systems, uses the Direct Memory Access (DMA) to increases the frequency of the new bus, and improves the speed of data exchange. While using this architecture in microprocessor-based system or in computer, the input of the hardware part of our system will be connected to the bus system, and the output, which is a new bus, will be connected to an external device. The new bus is composed of a data bus, a control bus and an address bus. A Xilinx Integrated Software Environment (ISE) 7.1i has been used for the programmable logic implementation.

Moving Data Mining Tools toward a Business Intelligence System

Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.

“Magnetic Cleansing” for the Provision of a ‘Quick Clean’ to Oiled Wildlife

This research is part of a broad program aimed at advancing the science and technology involved in the rescue and rehabilitation of oiled wildlife. One aspect of this research involves the use of oil-sequestering magnetic particles for the removal of contaminants from plumage – so-called “magnetic cleansing". This treatment offers a number of advantages over conventional detergent-based methods including portability - which offers the possibility of providing a “quick clean" to the animal upon first encounter in the field. This could be particularly advantageous when the contaminant is toxic and/or corrosive and/or where there is a delay in transporting the victim to a treatment centre. The method could also be useful as part of a stabilization protocol when large numbers of affected animals are awaiting treatment. This presentation describes the design, development and testing of a prototype field kit for providing a “quick clean" to contaminated wildlife in the field.