A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model

During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.

A Real-time Computer Vision System for VehicleTracking and Collision Detection

Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.

Antimicrobial Effect of Essential oil of Plant Trigonella focnum greacum on some Bacteria Pathogens

The plant world is the source of many medicines. Recently, researchers have estimated that there are approximately 400,000 plant species worldwide, of which about a quarter or a third have been used by societies for medicinal purposes. The human uses of plants for thousands of years to treat various ailments, in many developing countries, much of the population trust in traditional doctors and their collections of medicinal plants to treat them. Essential oils have many therapeutic properties. In herbal medicine, they are used for their antiseptic properties against infectious diseases of fungal origin, against dermatophytes, those of bacterial origin. The aim of our study is to determine the antimicrobial effect of essential oils of the plant Trigonella focnum greacum on some pathogenic bacteria, it is a medicinal plant used in traditional therapy. The test adopted is based on the diffusion method on solid medium (Antibiogram), this method determines the sensitivity or resistance of a microorganism vis-à-vis the extract studied. Our study reveals that the essential oil of the plant Trigonella focnum greacum has a different effect on the resistance of germs. For staphiloccocus Pseudomonnas aeroginosa and Krebsilla, are moderately sensitive strains, also Escherichia coli and Candida albicans represents a high sensitivity. By against Proteus is a strain that represents a weak sensitivity.

An Artificial Immune System for a Multi Agent Robotics System

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.

Use of Vegetation and Geo-Jute in Erosion Control of Slopes in a Sub-Tropical Climate

Protection of slope and embankment from erosion has become an important issue in Bangladesh. The constructions of strong structures require large capital, integrated designing, high maintenance cost. Strong structure methods have negative impact on the environment and sometimes not function for the design period. Plantation of vetiver system along the slopes is an alternative solution. Vetiver not only serves the purpose of slope protection but also adds green environment reducing pollution. Vetiver is available in almost all the districts of Bangladesh. This paper presents the application of vetiver system with geo-jute, for slope protection and erosion control of embankments and slopes. In-situ shear tests have been conducted on vetiver rooted soil system to find the shear strength. The shear strength and effective soil cohesion of vetiver rooted soil matrix are respectively 2.0 times and 2.1 times higher than that of the bared soil. Similar trends have been found in direct shear tests conducted on laboratory reconstituted samples. Field trials have been conducted in road embankment and slope protection with vetiver at different sites. During the time of vetiver root growth the soil protection has been accomplished by geo-jute. As the geo-jute degrades with time, vetiver roots grow and take over the function of geo-jutes. Slope stability analyses showed that vegetation increase the factor of safety significantly.

An Empirical Study about RFID Acceptance- Focus on the Employees in Korea -

The number of the companies accepting RFID in Korea has been increased continuously due to the domestic development of information technology. The acceptance of RFID by companies in Korea enabled them to do business with many global enterprises in a much more efficient and effective way. According to a survey[33, p76], many companies in Korea have used RFID for inventory or distribution manages. But, the use of RFID in the companies in Korea is in the early stages and its potential value hasn-t fully been realized yet. At this time, it would be very important to investigate the factors that affect RFID acceptance. For this study, many previous studies were referenced and some RFID experts were interviewed. Through the pilot test, four factors were selected - Security Trust, Employee Knowledge, Partner Influence, Service Provider Trust - affecting RFID acceptance and an extended technology acceptance model(e-TAM) was presented with those factors. The proposed model was empirically tested using data collected from employees in companies or public enterprises. In order to analyze some relationships between exogenous variables and four variables in TAM, structural equation modeling(SEM) was developed and SPSS12.0 and AMOS 7.0 were used for analyses. The results are summarized as follows: 1) security trust perceived by employees positively influences on perceived usefulness and perceived ease of use; 2) employee-s knowledge on RFID positively influences on only perceived ease of use; 3) a partner-s influence for RFID acceptance positively influences on only perceived usefulness; 4) service provider trust very positively influences on perceived usefulness and perceived ease of use 5) the relationships between TAM variables are the same as the previous studies.

Do C-Test and Cloze Procedure Measure what they Purport to be Measuring? A Case of Criterion-Related Validity

This article investigated the validity of C-test and Cloze test which purport to measure general English proficiency. To provide empirical evidence pertaining to the validity of the interpretations based on the results of these integrative language tests, their criterion-related validity was investigated. In doing so, the test of English as a foreign language (TOEFL) which is an established, standardized, and internationally administered test of general English proficiency was used as the criterion measure. Some 90 Iranian English majors participated in this study. They were seniors studying English at a university in Tehran, Iran. The results of analyses showed that there is a statistically significant correlation among participants- scores on Cloze test, C-test, and the TOEFL. Building on the findings of the study and considering criterion-related validity as the evidential basis of the validity argument, it was cautiously deducted that these tests measure the same underlying trait. However, considering the limitations of using criterion measures to validate tests, no absolute claims can be made as to the construct validity of these integrative tests.

Restartings: A Technique to Improve Classic Genetic Algorithms Performance

In this contribution, a way to enhance the performance of the classic Genetic Algorithm is proposed. The idea of restarting a Genetic Algorithm is applied in order to obtain better knowledge of the solution space of the problem. A new operator of 'insertion' is introduced so as to exploit (utilize) the information that has already been collected before the restarting procedure. Finally, numerical experiments comparing the performance of the classic Genetic Algorithm and the Genetic Algorithm with restartings, for some well known test functions, are given.

Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path

The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.

Family Bonding and Self-Concept: An Indirect Effect Mediated by School Experiences among Students

School experiences, family bonding and self-concept had always been a crucial factor in influencing all aspects of a student-s development. The purpose of this study is to develop and to validate a priori model of self-concept among students. The study was tested empirically using Structural Equation Modeling (SEM) and Confirmatory Factor Analysis (CFA) to validate the structural model. To address these concerns, 1167 students were randomly selected and utilized the Cognitive Psycho-Social University of Malaya instrument (2009).Resulted demonstrated there is indirect effect from family bonding to self-concept through school experiences among secondary school students as a mediator. Besides school experiences, there is a direct effect from family bonding to self-concept and family bonding to school experiences among students.

Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions

In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.

The Citizen Participation in Preventing Illegal Drugs Program in Bangkok, Thailand

The purposes of this research were to study the citizen participation in preventing illegal drugs in one of a poor and small community of Bangkok, Thailand and to compare the level of participation and concern of illegal drugs problem by using demographic variables. This paper drew upon data collected from a local citizens survey conducted in Bangkok, Thailand during summer of 2012. A total of 200 respondents were elicited as data input for, and one way ANOVA test. The findings revealed that the overall citizen participation was in the level of medium. The mean score showed that benefit from the program was ranked as the highest and the decision to participate was ranked as second while the follow-up of the program was ranked as the lowest. In terms of the difference in demographic such as gender, age, level of education, income, and year of residency, the hypothesis testing’s result disclosed that there were no difference in their level of participation. However, difference in occupation showed a difference in their level of participation and concern which was significant at the 0.05 confidence level.

Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Concept Indexing using Ontology and Supervised Machine Learning

Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.

A New Face Detection Technique using 2D DCT and Self Organizing Feature Map

This paper presents a new technique for detection of human faces within color images. The approach relies on image segmentation based on skin color, features extracted from the two-dimensional discrete cosine transform (DCT), and self-organizing maps (SOM). After candidate skin regions are extracted, feature vectors are constructed using DCT coefficients computed from those regions. A supervised SOM training session is used to cluster feature vectors into groups, and to assign “face" or “non-face" labels to those clusters. Evaluation was performed using a new image database of 286 images, containing 1027 faces. After training, our detection technique achieved a detection rate of 77.94% during subsequent tests, with a false positive rate of 5.14%. To our knowledge, the proposed technique is the first to combine DCT-based feature extraction with a SOM for detecting human faces within color images. It is also one of a few attempts to combine a feature-invariant approach, such as color-based skin segmentation, together with appearance-based face detection. The main advantage of the new technique is its low computational requirements, in terms of both processing speed and memory utilization.

Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern

In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.

A Discrete Filtering Algorithm for Impulse Wave Parameter Estimation

This paper presents a new method for estimating the mean curve of impulse voltage waveforms that are recorded during impulse tests. In practice, these waveforms are distorted by noise, oscillations and overshoot. The problem is formulated as an estimation problem. Estimation of the current signal parameters is achieved using a fast and accurate technique. The method is based on discrete dynamic filtering algorithm (DDF). The main advantage of the proposed technique is its ability in producing the estimates in a very short time and at a very high degree of accuracy. The algorithm uses sets of digital samples of the recorded impulse waveform. The proposed technique has been tested using simulated data of practical waveforms. Effects of number of samples and data window size are studied. Results are reported and discussed.

On the Fast Convergence of DD-LMS DFE Using a Good Strategy Initialization

In wireless communication system, a Decision Feedback Equalizer (DFE) to cancel the intersymbol interference (ISI) is required. In this paper, an exact convergence analysis of the (DFE) adapted by the Least Mean Square (LMS) algorithm during the training phase is derived by taking into account the finite alphabet context of data transmission. This allows us to determine the shortest training sequence that allows to reach a given Mean Square Error (MSE). With the intention of avoiding the problem of ill-convergence, the paper proposes an initialization strategy for the blind decision directed (DD) algorithm. This then yields a semi-blind DFE with high speed and good convergence.

Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.