Comparison of Automated Zone Design Census Output Areas with Existing Output Areas in South Africa

South Africa is one of the few countries that have stopped using the same Enumeration Areas (EAs) for census enumeration and dissemination. The advantage of this change is that confidentiality issue could be addressed for census dissemination as the design of geographic unit for collection is mainly to ensure that this unit is covered by one enumerator. The objective of this paper was to evaluate the performance of automated zone design output areas against non-zone design developed geographies using the 2001 census data, and 2011 census to some extent, as the main input. The comparison of the Automated Zone-design Tool (AZTool) census output areas with the Small Area Layers (SALs) and SubPlaces based on confidentiality limit, population distribution, and degree of homogeneity, as well as shape compactness, was undertaken. Further, SPSS was employed for validation of the AZTool output results. The results showed that AZTool developed output areas out-perform the existing official SAL and SubPlaces with regard to minimum population threshold, population distribution and to some extent to homogeneity. Therefore, it was concluded that AZTool program provides a new alternative to the creation of optimised census output areas for dissemination of population census data in South Africa.

Experimental Investigation of Visual Comfort Requirement in Garment Factories and Identify the Cost Saving Opportunities

Visual comfort is one of the major parameters that can be taken to measure the human comfort in any environment. If the provided illuminance level in a working environment does not meet the workers visual comfort, it will lead to eye-strain, fatigue, headache, stress, accidents and finally, poor productivity. However, improvements in lighting do not necessarily mean that the workplace requires more light. Unnecessarily higher illuminance levels will also cause poor visual comfort and health risks. In addition, more power consumption on lighting will also result in higher energy costs. So, during this study, visual comfort and the illuminance requirement for the workers in textile/apparel industry were studied to perform different tasks (i.e. cutting, sewing and knitting) at their workplace. Experimental studies were designed to identify the optimum illuminance requirement depending upon the varied fabric colour and type and finally, energy saving potentials due to controlled illuminance level depending on the workforce requirement were analysed. Visual performance of workers during the sewing operation was studied using the ‘landolt ring experiment’. It was revealed that around 36.3% of the workers would like to work if the illuminance level varies from 601 lux to 850 lux illuminance level and 45.9% of the workers are not happy to work if the illuminance level reduces less than 600 lux and greater than 850 lux. Moreover, more than 65% of the workers who do not satisfy with the existing illuminance levels of the production floors suggested that they have headache, eye diseases, or both diseases due to poor visual comfort. In addition, findings of the energy analysis revealed that the energy-saving potential of 5%, 10%, 24%, 8% and 16% can be anticipated for fabric colours, red, blue, yellow, black and white respectively, when the 800 lux is the prevailing illuminance level for sewing operation.

Jigger Flea (Tunga penetrans) Infestations and Use of Soil-Cow Dung-Ash Mixture as a Flea Control Method in Eastern Uganda

Despite several interventions, jigger flea infestations continue to be reported in the Busoga sub-region in Eastern Uganda. The purpose of this study was to identify factors that expose the indigenous people to jigger flea infestations and evaluate the effectiveness of any indigenous materials used in flea control by the affected communities. Flea compositions in residences were described, factors associated with flea infestation and indigenous materials used in flea control were evaluated. Field surveys were conducted in the affected communities after obtaining preliminary information on jigger infestation from the offices of the District Health Inspectors to identify the affected villages and households. Informed consent was then sought from the local authorities and household heads to conduct the study. Focus group discussions were conducted with key district informants, namely, the District Health Inspectors, District Entomologists and representatives from the District Health Office. A GPS coordinate was taken at central point at every household enrolled. Fleas were trapped inside residences using Kilonzo traps. A Kilonzo Trap comprised a shallow pan, about three centimetres deep, filled to the brim with water. The edges of the pan were smeared with Vaseline to prevent fleas from crawling out. Traps were placed in the evening and checked every morning the following day. The trapped fleas were collected in labelled vials filled with 70% aqueous ethanol and taken to the laboratory for identification. Socio-economic and environmental data were collected. The results indicate that the commonest flea trapped in the residences was the cat flea (Ctenocephalides felis) (50%), followed by Jigger flea (Tunga penetrans) (46%) and rat flea (Xenopsylla Cheopis) (4%), respectively. The average size of residences was seven squire metres with a mean of six occupants. The residences were generally untidy; with loose dusty floors and the brick walls were not plastered. The majority of the jigger affected households were headed by peasants (86.7%) and artisans (13.3%). The household heads mainly stopped at primary school level (80%) and few at secondary school level (20%). The jigger affected households were mainly headed by peasants of low socioeconomic status. The affected community members use soil-cow dung-ash mixture to smear floors of residences as the only measure to control fleas. This method was found to be ineffective in controlling the insects. The study recommends that home improvement campaigns be continued in the affected communities to improve sanitation and hygiene in residences as one of the interventions to combat flea infestations. Other cheap, available and effective means should be identified to curb jigger flea infestations.

A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration

In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.

Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres

Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.

Fire Resistance of High Alumina Cement and Slag Based Ultra High Performance Fibre-Reinforced Cementitious Composites

Fibre-reinforced polymer (FRP) strengthened reinforced concrete (RC) structures are susceptible to intense deterioration when exposed to elevated temperatures, particularly in the incident of fire. FRP has the tendency to lose bond with the substrate due to the low glass transition temperature of epoxy; the key component of FRP matrix.  In the past few decades, various types of high performance cementitious composites (HPCC) were explored for the protection of RC structural members against elevated temperature. However, there is an inadequate information on the influence of elevated temperature on the ultra high performance fibre-reinforced cementitious composites (UHPFRCC) containing ground granulated blast furnace slag (GGBS) as a replacement of high alumina cement (HAC) in conjunction with hybrid fibres (basalt and polypropylene fibres), which could be a prospective fire resisting material for the structural components. The influence of elevated temperatures on the compressive as well as flexural strength of UHPFRCC, made of HAC-GGBS and hybrid fibres, were examined in this study. Besides control sample (without fibres), three other samples, containing 0.5%, 1% and 1.5% of basalt fibres by total weight of mix and 1 kg/m3 of polypropylene fibres, were prepared and tested. Another mix was also prepared with only 1 kg/m3 of polypropylene fibres. Each of the samples were retained at ambient temperature as well as exposed to 400, 700 and 1000 °C followed by testing after 28 and 56 days of conventional curing. Investigation of results disclosed that the use of hybrid fibres significantly helped to improve the ambient temperature compressive and flexural strength of UHPFRCC, which was found to be 80 and 14.3 MPa respectively. However, the optimum residual compressive strength was marked by UHPFRCC-CP (with polypropylene fibres only), equally after both curing days (28 and 56 days), i.e. 41%. In addition, the utmost residual flexural strength, after 28 and 56 days of curing, was marked by UHPFRCC– CP and UHPFRCC– CB2 (1 kg/m3 of PP fibres + 1% of basalt fibres) i.e. 39% and 48.5% respectively.

Comparison of Authentication Methods in Internet of Things Technology

Internet of Things (IoT) is a powerful industry system, which end-devices are interconnected and automated, allowing the devices to analyze data and execute actions based on the analysis. The IoT technology leverages the technology of Radio-Frequency Identification (RFID) and Wireless Sensor Network (WSN), including mobile and sensor. These technologies contribute to the evolution of IoT. However, due to more devices are connected each other in the Internet, and data from various sources exchanged between things, confidentiality of the data becomes a major concern. This paper focuses on one of the major challenges in IoT; authentication, in order to preserve data integrity and confidentiality are in place. A few solutions are reviewed based on papers from the last few years. One of the proposed solutions is securing the communication between IoT devices and cloud servers with Elliptic Curve Cryptograhpy (ECC) based mutual authentication protocol. This solution focuses on Hyper Text Transfer Protocol (HTTP) cookies as security parameter.  Next proposed solution is using keyed-hash scheme protocol to enable IoT devices to authenticate each other without the presence of a central control server. Another proposed solution uses Physical Unclonable Function (PUF) based mutual authentication protocol. It emphasizes on tamper resistant and resource-efficient technology, which equals a 3-way handshake security protocol.

Plasma Arc Burner for Pulverized Coal Combustion

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment

The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.

Quantifying Mobility of Urban Inhabitant Based on Social Media Data

Check-in locations on social media provide information about an individual’s location. The millions of units of data generated from these sites provide knowledge for human activity. In this research, we used a geolocation service and users’ texts posted on Twitter social media to analyze human mobility. Our research will answer the questions; what are the movement patterns of a citizen? And, how far do people travel in the city? We explore the people trajectory of 201,118 check-ins and 22,318 users over a period of one month in Makassar city, Indonesia. To accommodate individual mobility, the authors only analyze the users with check-in activity greater than 30 times. We used sampling method with a systematic sampling approach to assign the research sample. The study found that the individual movement shows a high degree of regularity and intensity in certain places. The other finding found that the average distance an urban inhabitant can travel per day is as far as 9.6 km.

Conceptualizing of Priorities in the Dynamics of Public Administration Contemporary Reforms

The article presents the results of the creative analysis and comparison of trends in the development of the theory of public administration during the period from the second half of the 20th to the beginning of the 21st century. The process of conceptualization of the priorities of public administration in the dynamics of reforming was held under the influence of such factors as globalization, integration, information and technological changes and human rights is examined. The priorities of the social state in the concepts of the second half of the 20th century are studied. Peculiar approaches to determining the priorities of public administration in the countries of "Soviet dictatorship" in Central and Eastern Europe in the same period are outlined. Particular attention is paid to the priorities of public administration regarding the interaction between public power and society and the development of conceptual foundations for the modern managerial process. There is a thought that the dynamics of the formation of concepts of the European governance is characterized by the sequence of priorities: from socio-economic and moral-ethical to organizational-procedural and non-hierarchical ones. The priorities of the "welfare state" were focused on the decent level of material wellbeing of population. At the same time, the conception of "minimal state" emphasized priorities of human responsibility for their own fate under the conditions of minimal state protection. Later on, the emphasis was placed on horizontal ties and redistribution of powers and competences of "effective state" with its developed procedures and limits of responsibility at all levels of government and in close cooperation with the civil society. The priorities of the contemporary period are concentrated on human rights in the concepts of "good governance" and all the following ones, which recognize the absolute priority of public administration with compliance, provision and protection of human rights. There is a proved point of view that civilizational changes taking place under the influence of information and technological imperatives also stipulate changes in priorities, redistribution of emphases and update principles of managerial concepts on the basis of publicity, transparency, departure from traditional forms of hierarchy and control in favor of interactivity and inter-sectoral interaction, decentralization and humanization of managerial processes. The necessity to permanently carry out the reorganization, by establishing the interaction between different participants of public power and social relations, to establish a balance between political forces and social interests on the basis of mutual trust and mutual understanding determines changes of social, political, economic and humanitarian paradigms of public administration and their theoretical comprehension. The further studies of theoretical foundations of modern public administration in interdisciplinary discourse in the context of ambiguous consequences of the globalizational and integrational processes of modern European state-building would be advisable. This is especially true during the period of political transformations and economic crises which are the characteristic of the contemporary Europe, especially for democratic transition countries.

Steady State Power Flow Calculations with STATCOM under Load Increase Scenario and Line Contingencies

Flexible AC transmission system controllers play an important role in controlling the line power flow and in improving voltage profiles of the power system network. They can be used to increase the reliability and efficiency of transmission and distribution system. The modeling of these FACTS controllers in power flow calculations have become a challenging research problem. This paper presents a simple and systematic approach for a steady state power flow calculations of power system with STATCOM (Static Synchronous Compensator). It shows how systematically STATCOM can be implemented in conventional power flow calculations. The main contribution of this paper is to investigate this approach for two special conditions i.e. consideration of load increase pattern incorporating load change (active, reactive and both active and reactive) at all load buses simultaneously and the line contingencies under such load change. Such investigation proves to be relevant for determination of strategy for the optimal placement of STATCOM to enhance the voltage stability. The performance has been evaluated on many standard IEEE test systems. The results for standard IEEE-30 bus test system are presented here.

Design and Analysis of an Electro Thermally Symmetrical Actuated Microgripper

This paper presents design and analysis of an electrothermally symmetrical actuated microgripper applicable for performing micro assembly or biological cell manipulation. Integration of micro-optics with microdevice leads to achieve extremely precise control over the operation of the device. Geometry, material, actuation, control, accuracy in measurement and temperature distribution are important factors which have to be taken into account for designing the efficient microgripper device. In this work, analyses of four different geometries are performed by means of COMSOL Multiphysics 5.2 with implementing Finite Element Methods. Then, temperature distribution along the fingertip, displacement of gripper site as well as optical efficiency vs. displacement and electrical potential are illustrated. Results show in addition to the industrial application of this device, the usage of that as a cell manipulator is possible.

Evaluating the Evolution of Public Art across the World and Exploring Its Growth in Urban India

Public Art is a tool with the power to enrich and enlighten any place; it has been accepted and welcomed effortlessly by many cultures around the World. In this paper, we discuss the implications Public Art has had on the society and how it has evolved over the years, and how in India, art in this aspect is still overlooked and treated as an accessory. Urban aesthetics are still substantially limited to the installation of deities, political figures, and so on. The paper also discusses various possibilities and opportunities on how Public Art can boost a society; it also suggests a framework that can be incorporated in the legal system of the country to make it a part of the city development process.

Social Media Idea Ontology: A Concept for Semantic Search of Product Ideas in Customer Knowledge through User-Centered Metrics and Natural Language Processing

In order to survive on the market, companies must constantly develop improved and new products. These products are designed to serve the needs of their customers in the best possible way. The creation of new products is also called innovation and is primarily driven by a company’s internal research and development department. However, a new approach has been taking place for some years now, involving external knowledge in the innovation process. This approach is called open innovation and identifies customer knowledge as the most important source in the innovation process. This paper presents a concept of using social media posts as an external source to support the open innovation approach in its initial phase, the Ideation phase. For this purpose, the social media posts are semantically structured with the help of an ontology and the authors are evaluated using graph-theoretical metrics such as density. For the structuring and evaluation of relevant social media posts, we also use the findings of Natural Language Processing, e. g. Named Entity Recognition, specific dictionaries, Triple Tagger and Part-of-Speech-Tagger. The selection and evaluation of the tools used are discussed in this paper. Using our ontology and metrics to structure social media posts enables users to semantically search these posts for new product ideas and thus gain an improved insight into the external sources such as customer needs.

The Folksongs of Jharkhand: An Intangible Cultural Heritage of Tribal India

Jharkhand is newly constituted 28th State in the eastern part of India which is known for the oldest settlement of the indigenous people. In the State of Jharkhand in which broadly three language family are found namely, Austric, Dravidian, and Indo-European. Ex-Mundari, kharia, Ho Santali come from the Austric Language family. Kurukh, Malto under Dravidian language family and Nagpuri Khorta etc. under Indo-European language family. There are 32 Indigenous Communities identified as Scheduled Tribe in the State of Jharkhand. Santhal, Munda, Kahria, Ho and Oraons are some of the major Tribe of the Jharkhand state. Jharkhand has a Rich Cultural heritage which includes Folk art, folklore, Folk Dance, Folk Music, Folk Songs for which diversity can been seen from place to place, season to season and all traditional Culture and practices. The languages as well as the songs are vulnerable to dominant culture and hence needed to be protected. The collection and documentation of these songs in their natural setting adds significant contribution to the conservation and propagation of the cultural elements. This paper reflects to bring out the Originality of the Collected Songs from remote areas of the plateau of Sothern Jharkhand as a rich intangible Cultural heritage of the Country. The research was done through participatory observation. In this research project more than 100 songs which were never documented before.

Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network

Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.

Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia

This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.

Application of Western and Islamic Philosophy to Business Ethics

The world has witnessed the collapse of many corporate giants as a result of unethical behavior in recent decades. This has induced a series of questions by the global community on why such occurrences could happen, even with corporate governance in place. This paper attempts to propose a philosophical approach from an Islamic perspective to be consolidated with current corporate governance in order to confront contemporary dilemmas. In this paper, ethical theories are presented as a discussion followed by their applications to modern cases of financial collapses. Virtue ethics by Aristotle, justice and fairness by John Rawls, deontology by Immanuel Kant, and utilitarianism by John Stuart Mill, are the four theories which can then be contrasted with the paradigm of Muslim scholars. Despite the differences between the fundamental principles of Islamic and Western worldviews, their ethical theories are aimed at making right decisions and solving ethical dilemmas based on what is good for society. Therefore, Islamic principles should be synthesized with Western philosophy to form a more coherent framework. The integration of Islamic and western ethical theories into business is important for sound corporate governance.

Optimization of Solar Tracking Systems

In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.