An Analysis of Innovative Cloud Model as Bridging the Gap between Physical and Virtualized Business Environments: The Customer Perspective

This study aims to investigate and explore the underlying causes of security concerns of customers emerged when WHSmith transformed its physical system to virtualized business model through NetSuite. NetSuite is essentially fully integrated software which helps transforming the physical system to virtualized business model. Modern organisations are moving away from traditional business models to cloud based models and consequently it is expected to have a better, secure and innovative environment for customers. The vital issue of the modern age race is the security when transforming virtualized through cloud based models and designers of interactive systems often misunderstand privacy and even often ignore it, thus causing concerns for users. The content analysis approach is being used to collect the qualitative data from 120 online bloggers including TRUSTPILOT. The results and finding provide useful new insights into the nature and form of security concerns of online users after they have used the WHSmith services offered online through their website. Findings have theoretical as well as practical implications for the successful adoption of cloud computing Business-to-Business model and similar systems.

A Review on Concrete Structures in Fire

Concrete as a construction material is versatile because it displays high degree of fire-resistance. Concrete’s inherent ability to combat one of the most devastating disaster that a structure can endure in its lifetime, can be attributed to its constituent materials which make it inert and have relatively poor thermal conductivity. However, concrete structures must be designed for fire effects. Structural components should be able to withstand dead and live loads without undergoing collapse. The properties of high-strength concrete must be weighed against concerns about its fire resistance and susceptibility to spalling at elevated temperatures. In this paper, the causes, effects and some remedy of deterioration in concrete due to fire hazard will be discussed. Some cost effective solutions to produce a fire resistant concrete will be conversed through this paper.

Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation

Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.

Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami

Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.

Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Biodiversity of Plants Rhizosphere and Rhizoplane Bacteria in the Presence of Petroleum Hydrocarbons

Following plants-barley (Hordeum sativum), alfalfa (Medicago sativa), grass mixture (red fescue-75%, long-term ryegrass - 20% Kentucky bluegrass - 10%), oilseed rape (Brassica napus biennis), resistant to growth in the contaminated soil with oil content of 15.8 g / kg 25.9 g / kg soil were used. Analysis of the population showed that the oil pollution reduces the number of bacteria in the rhizosphere and rhizoplane of plants and enhances the amount of spore-forming bacteria and saprotrophic micromycetes. It was shown that regardless of the plant, dominance of Pseudomonas and Bacillus genera bacteria was typical for the rhizosphere and rhizoplane of plants. The frequency of bacteria of these genera was more than 60%. Oil pollution changes the ratio of occurrence of various types of bacteria in the rhizosphere and rhizoplane of plants. Besides the Pseudomonas and Bacillus genera, in the presence of hydrocarbons in the root zone of plants dominant and most typical were the representatives of the Mycobacterium and Rhodococcus genera. Together the number was between 62% to 72%.

Slaughter and Carcass Characterization, and Sensory Qualities of Native, Pure, and Upgraded Breeds of Goat Raised in the Philippines

Goat production is one of the activities included in integrated farming in the Philippines. Goats are raised for its meat and regardless of breed the animal is slaughtered for this purpose. In order to document the carcass yield of different goats slaughtered, five (5) different breeds of goats to include Purebred Boer and Anglo-nubian, Crossbred Boer and Anglo-nubian and Philippine Native goat were used in the study. Data on slaughter parameters, carcass characteristics, and sensory evaluation were gathered and analyzed using Complete Random Design (CRD) at 5% level of significance and the results of carcass conformation were assessed descriptively. Results showed that slaughter data such as slaughter/live weight, hot and chilled carcass weights, dressing percentage and percentage drip loss were significantly different (P>0.05) among breeds. On carcass and meat characteristics, pure breed and upgraded Boer were found to be moderately muscular while Native goat was rated as thin muscular. The color of the carcass also revealed that Purebred and crossbred Boer were described dark red, while Native goat was noted to be slightly pale. On sensory evaluation, the results indicated that there was no significant difference (P>0.05) among breeds evaluated. It is therefore concluded that purebred goat has heavier carcass, while both purebred Boer and upgrade are rated slightly muscular. It is further confirms that regardless of breed, goat will have the same sensory characteristics. Thus, it is recommended to slaughter heavier goats to obtain more carcasses with better conformation and quality.

Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still

Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.

Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

The Application of Action Research to Integrate the Innovation in Learning Experience in a Design Course

This case study used the action research concept as a tool to integrate the innovation in a learning experience on a design course. The action research was investigated at Prince Sultan University, College of Engineering in the Interior Design and Architecture Department in January 2015, through the Higher Education Academy program. The action research was presented first with the definition of the research, leading to how it was used and how solutions were found. It concluded by showing that once the action research application in interior design and architecture were studied it was an effective tool to improve student’s learning, develop their practice in design courses, and it discussed the negative and positive issues that were encountered.

Managers’ Capacity Building for Institutional Sustainability Performance

The Institutional Sustainability Performance (ISP) of State Universities and Colleges (SUCs) in the Philippines reveals the level of compliance and fidelity of the latter to the mandates of the state. This performance evaluation procedure aims to perpetually monitor and sustain the quality of services provided by the state institutions in the country. Importantly, the SUC level rating is one of the key indicators of the merit system adopted by the state to give incentives to government institutions. With the crucial role of the ISP and SUC level in the performance of an institution and in sustaining quality assurance, this study theorized that the top managers’ capacity to influence is the critical factor in meeting the expectations of the state. This study assessed the top managers’ capacity to influence. The hypothesis in this study proved that leadership style of top managers has significant relationship to the managers’ capacity to influence for institutional sustainability performance. Thus, the subjects of this study were restricted only to the State Universities and Colleges (SUC) that qualified in the top 20 Institutional Sustainability Performance; the digital governance performance, and the SUC leveling status nationwide. The top managers and their subordinates with doctorate of Bulacan State University and Bataan Peninsula State University whose programs have been consistently submitted to accreditation and were ranked Levels III and IV were subjected and participated to the study. This study assessed the top managers’ capacity to influence. The hypothesis in this study proved that leadership style of top managers has significant relationship to the managers’ capacity to influence for institutional sustainability performance. Thus, the subjects of this study were restricted only to the State Universities and Colleges (SUC) that qualified in the top 20 Institutional Sustainability Performance; the digital governance performance, and the SUC leveling status nationwide. The top managers and their subordinates with doctorate of Bulacan State University and Bataan Peninsula State University whose programs have been consistently submitted to accreditation and were ranked Levels III and IV were subjected and participated to the study.

Network Mobility Support in Content-Centric Internet

In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.

Enhance Indoor Environment in Buildings and Its Effect on Improving Occupant's Health

Recently, the world main problem is a global warming and climate change affecting both outdoor and indoor environments, especially the air quality (AQ) as a result of vast migration of people from rural areas to urban areas. Therefore, cities became more crowded and denser from an irregular population increase, along with increasing urbanization caused many problems for the environment such as increasing the land prices, changes in life style, and the new buildings are not adapted to the climate producing uncomfortable and unhealthy indoor building conditions. As interior environments are the places that create the most intimate relationship with the user. Consequently, the indoor environment quality (IEQ) for buildings became uncomfortable and unhealthy for its occupants. The symptoms commonly associated with poor indoor environment such as itchy, headache, fatigue, and respiratory complaints such as cough and congestion, etc. The symptoms tend to improve over time or even disappear when people are away from the building. Therefore, designing a healthy indoor environment to fulfill human needs is the main concern for architects and interior designer. However, this research explores how occupant expectations and environmental attitudes may influence occupant health and satisfaction within the context of the indoor environment. In doing so, it reviews and contributes to the methods and tools used to evaluate only the indoor environment quality (IEQ) components of building performance. Its main aim is to review the literature on indoor human comfort. This is followed by a review of previous papers published related to human comfort. Finally, this paper will provide possible approaches in design level of healthy buildings.

Enhancement of MIMO H2S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H2S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. New design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force

Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases. 

Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique

This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity (  ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.

Influence of Yeast Strains on Microbiological Stability of Wheat Bread

Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.

Knowledge Management Strategies within a Corporate Environment of Papers

Knowledge transfer between personnel could benefit an organization’s improved competitive advantage in the marketplace from a strategic approach to knowledge management. The lack of information sharing between personnel could create knowledge transfer gaps while restricting the decision-making processes. Knowledge transfer between personnel can potentially improve information sharing based on an implemented knowledge management strategy. An organization’s capacity to gain more knowledge is aligned with the organization’s prior or existing captured knowledge. This case study attempted to understand the overall influence of a KMS within the corporate environment and knowledge exchange between personnel. The significance of this study was to help understand how organizations can improve the Return on Investment (ROI) of a knowledge management strategy within a knowledge-centric organization. A qualitative descriptive case study was the research design selected for this study. The lack of information sharing between personnel may create knowledge transfer gaps while restricting the decision-making processes. Developing a knowledge management strategy acceptable at all levels of the organization requires cooperation in support of a common organizational goal. Working with management and executive members to develop a protocol where knowledge transfer becomes a standard practice in multiple tiers of the organization. The knowledge transfer process could be measurable when focusing on specific elements of the organizational process, including personnel transition to help reduce time required understanding the job. The organization studied in this research acknowledged the need for improved knowledge management activities within the organization to help organize, retain, and distribute information throughout the workforce. Data produced from the study indicate three main themes including information management, organizational culture, and knowledge sharing within the workforce by the participants. These themes indicate a possible connection between an organizations KMS, the organizations culture, knowledge sharing, and knowledge transfer.

Role of Feedbacks in Simulation-Based Learning

Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.