Disturbances of the Normal Operation of Kosovo Power System Regarding Atmospheric Discharges

This paper discusses aspects of outages in the electric transmission network in the Kosovo Power System caused by the atmospheric discharges. Frequency and location of the atmospheric discharges in Kosovo territory will be provided by a lightning location system ALARM (Automated Lightning Alert and Risk Management) and from the data from the Meteorological Department in Prishtina International Airport. These data will be used to make comparisons with the actual outages registered in the Kosovo Power System from the Kosovo Transmission, systems and market operator (KOSTT) during a specific time period. The lines with the worst performance determined, regarding the atmospheric discharges, will be choose for further discussions in terms of over voltages caused by the direct or indirect lightning strokes. Recommendations for protection in terms of insulator coordination and surge arresters will be given at the end and in this stage dynamic simulation will take part.

Effect of pH and Ionic Exchange on the Reactivity of Bioglass/Chitosan Composites Used as a Bone Graft Substitute

Chitosan (CH) material reinforced by bioactive glass (46S6) was fabricated. 46S6 containing 17% wt% CH was studied in vitro and in vivo. Physicochemical techniques, such as Fourier transform infrared spectroscopy (FT-IR), coupled plasma optical emission spectrometry (ICP-OES) analysis were used. The behavior of 46S6CH17 was studied by measuring the in situ pH in a SBF solution. The 46S6CH17 was implanted in the rat femoral condyl. In vitro 46S6CH17 gave an FTIR - spectrum in which three absorption bands with the maxima at 565, 603 and 1039cm-1 after 3 days of soaking in physiological solution. They are assigned to stretching vibrations of PO4^3- group in phosphate crystalline. Moreover, the pH measurement was decreased in the SBF solution. The stability of the calcium phosphate precipitation depended on the pH value. In vivo, a rise in the Ca and phosphate P ions concentrations in the implanted microenvironment was determined.

Efficient Oxyhydrogen Mixture Determination in Gas Detonation Forming

Oxyhydrogen is a mixture of Hydrogen (H2) and Oxygen (O2) gases. Detonative mixtures of oxyhydrogens with various combinations of these two gases were used in Gas Detonation Forming (GDF) to form sheets of mild steel. In die forming experiments, three types of conical dies with apex angles of 60, 90 and 120 degrees were used. Pressure of mixtures inside the chamber before detonation was varied from 3 Bar to 5 Bar to investigate the effect of pre-detonation pressure in the forming process. On each conical die, several experiments with different percentages of Hydrogen were carried out to determine the optimum gaseous mixture. According to our results the best forming process occurred when approximately 50-70%. Hydrogen was employed in the mixture. Furthermore, the experimental results were compared to the ones from FEM analysis. The FEM simulation results of thickness strain, hoop strain, thickness variation and deformed geometry are promising.

Fundamental Variables of Final Account Closing Success in Construction Projects in Malaysia

Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). Seeing as this process is not easy to be implemented efficiently and effectively, the issue of unsuccessful delivery as per contract in construction has become a major problem for construction projects. These issues have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demand, that are constantly changing and influencing, either directly or indirectly, to the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the fundamental variables in the final account closing success in construction project. This aim can be achieved via its objectives of identifying the key constraints to the closing of final accounts in construction projects in Malaysia, investigating solutions to the identified constraints and analysing the relative levels of impact of the identified constraints. It is expected that this paper provides effective measures to avoid or at least reduce the problems in final account closing to the optimum level. It is also anticipated that the finding or outcome reported in this paper could address the unsuccessful contributors in final account closing and define tools for their mitigation for the better development of construction project.

Innovation Culture – Determinant of Firms´ Sustainability

Changes in global economy require changes in firms. They need to adapt to speed producing faster and creating new products, structures and processes. The purpose of the paper is to explore literature about organizational culture and its impact on innovation. In the paper the method of literature review is used to examine influence of organizational culture on innovation and performance of enterprise. Organizational culture is crucial for innovation. Literature reveals that research of organizational culture mostly confirm already existing conceptions and models, but those help to make profile of innovation culture. Research summarize previous research of organizational culture as culture which foster innovation and provide profile of innovation culture, which may be used by managers to improve cultural environment to increase performance of their companies. Research also leads to hypothesis for further research.

Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites

Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principal benefits: moderate strength and stiffness, low cost, and being an environmental friendly, degradable, and renewable material. A study has been carried out to evaluate impact properties of composites made by areca fibers reinforced urea formaldehyde, melamine urea formaldehyde and epoxy resins. The extracted areca fibers from the areca husk were alkali treated with potassium hydroxide (KOH) to obtain better interfacial bonding between fiber and matrix. Then composites were produced by means of compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), and fiber loading percentages (50% and 60% by weight). The developed areca fiber reinforced composites were then characterized by impact test. The results show that, impact strength increase with increase in the loading percentage. It is observed that, treated areca fiber reinforcement increases impact strength when compared to untreated areca fiber reinforcement.

Beneficiation of Pyrolitic Carbon Black

This research investigated treatment of crude carbon black produced from pyrolysis of waste tyres in order to evaluate its quality and possible industrial applications. A representative sample of crude carbon black was dry screened to determine the initial particle size distribution. This was followed by pulverizing the crude carbon black and leaching in hot concentrated sulphuric acid for the removal of heavy metals and other contaminants. Analysis of the refined carbon black showed a significant improvement of the product quality compared to crude carbon black. It was discovered that refined carbon black can be further classified into multiple high value products for various industrial applications such as filler, paint pigment, activated carbon and fuel briquettes.

The Use of TV and the Internet in the Social Context

This study examines the media habits of young people in Saudi Arabia, in particular their use of the Internet and television in the domestic sphere, and how use of the Internet impacts upon other activities. In order to address the research questions, focus group interviews were conducted with Saudi university students. The study found that television has become a central part of social life within the household where television represents a main source for family time, particularly in Ramadan while the Internet is a solitary activity where it is used in more private spaces. Furthermore, Saudi females were also more likely to have their Internet access monitored and circumscribed by family members, with parents controlling the location and the amount of time spent using the Internet.

A Statistical Prediction of Likely Distress in Nigeria Banking Sector Using a Neural Network Approach

One of the most significant threats to the economy of a nation is the bankruptcy of its banks. This study evaluates the susceptibility of Nigerian banks to failure with a view to identifying ratios and financial data that are sensitive to solvency of the bank. Further, a predictive model is generated to guide all stakeholders in the industry. Thirty quoted banks that had published Annual Reports for the year preceding the consolidation i.e. year 2004 were selected. They were examined for distress using the Multilayer Perceptron Neural Network Analysis. The model was used to analyze further reforms by the Central Bank of Nigeria using published Annual Reports of twenty quoted banks for the year 2008 and 2011. The model can thus be used for future prediction of failure in the Nigerian banking system.

An Integrated Operational Research and System Dynamics Approach for Planning Decisions in Container Terminals

This paper focuses on the operational and strategic planning decisions related to the quayside of container terminals. We introduce an integrated operational research (OR) and system dynamics (SD) approach to solve the Berth Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP). A BAP-QCAP optimization modeling approach which considers practical aspects not studied before in the integration of BAP and QCAP is discussed. A conceptual SD model is developed to determine the long-term effect of optimization on the system behavior factors like resource utilization, attractiveness to port, number of incoming vessels to port and port profits. The framework can be used for improving the operational efficiency of container terminals and providing a strategic view after applying optimization.

A Study of Priority Evaluation and Resource Allocation for Revitalization of Cultural Heritages in the Urban Development

Proper maintenance and preservation of significant cultural heritages or historic buildings is necessary. It can not only enhance environmental benefits and a sense of community, but also preserve a city's history and people’s memory. It allows the next generation to be able to get a glimpse of our past, and achieve the goal of sustainable preserved cultural assets. However, the management of maintenance work has not been appropriate for many designated heritages or historic buildings so far. The planning and implementation of the reuse has yet to have a breakthrough specification. It leads the heritages to a mere formality of being “reserved”, instead of the real meaning of “conservation”. For the restoration and preservation of cultural heritages study issues, it is very important due to the consideration of historical significance, symbolism, and economic benefits effects. However, the decision makers such as the officials from public sector they often encounter which heritage should be prioritized to be restored first under the available limited budgets. Only very few techniques are available today to determine the appropriately restoration priorities for the diverse historical heritages, perhaps because of a lack of systematized decision-making aids been proposed before. In the past, the discussions of management and maintenance towards cultural assets were limited to the selection of reuse alternatives instead of the allocation of resources. In view of this, this research will adopt some integrated research methods to solve the existing problems that decision-makers might encounter when allocating resources in the management and maintenance of heritages and historic buildings. The purpose of this study is to develop a sustainable decision making model for local governments to resolve these problems. We propose an alternative decision support model to prioritize restoration needs within the limited budgets. The model is constructed based on fuzzy Delphi, fuzzy analysis network process (FANP) and goal programming (GP) methods. In order to avoid misallocate resources; this research proposes a precise procedure that can take multi-stakeholders views, limited costs and resources into consideration. Also, the combination of many factors and goals has been taken into account to find the highest priority and feasible solution results. To illustrate the approach we propose in this research, seven cultural heritages in Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

Using Multi-Linguistic Techniques for Thailand Herb and Traditional Medicine Registration Systems

Thailand has evolved many unique culture and knowledge, and the leading is the Thai traditional medicine (TTM). Recently, a number of researchers have tried to save this indigenous knowledge. However, the system to do so has still been scant. To preserve this ancient knowledge, we therefore invented and integrated multi-linguistic techniques to create the system of the collected all of recipes. This application extracted the medical recipes from antique scriptures then normalized antiquarian words, primitive grammar and antiquated measurement of them to the modern ones. Then, we applied ingredient-duplication-calculation, proportion-similarity-calculation and score-ranking to examine duplicate recipes. We collected the questionnaires from registrants and people to investigate the users’ satisfaction. The satisfactory results were found. This application assists not only registrants to validating the copyright violation in TTM registration process but also people to cure their illness that aids both Thai people and all mankind to fight for intractable diseases.

A Car Parking Monitoring System Using Wireless Sensor Networks

This paper presents a car parking monitoring system using wireless sensor networks. Multiple sensor nodes and a sink node, a gateway, and a server constitute a wireless network for monitoring a parking lot. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. Each sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The sensor nodes and sink node use the 448 MHz band for wireless communication. Since RF transmission only occurs when sensor values show abrupt changes, the number of RF transmission operations is reduced and battery power can be conserved. The data from the sensor nodes reach the server via the sink node and gateway. The server determines which parking spaces are taken by cars based upon the received sensor data and reference values. The reference values are average sensor values measured by each sensor node when the corresponding parking spot is not occupied by a vehicle. Because the decision making is done by the server, the computational burden of the sensor node is relieved, which helps reduce the duty cycle of the sensor node.

Integration of Inter-Organisational Learning with Supply Chain Management: A Literature Review

This paper subsidises to the discussion of inter-organisational learning. This study has a main aim which is to examine the inter-organisational learning from a supply chain perspective. The integration and importance of supply chain with inter-organisational learning till date is discussed. The steps that are involved in the consideration of inter-organisational learning are looked throughout with emphasis done to supply chain management. The paper studies the impact of absorptive capacity, the supply chain orientation and design as well as discusses on fostering the inter-organisational learning.

Reliability Approximation through the Discretization of Random Variables using Reversed Hazard Rate Function

Sometime it is difficult to determine the exact reliability for complex systems in analytical procedures. Approximate solution of this problem can be provided through discretization of random variables. In this paper we describe the usefulness of discretization of a random variable using the reversed hazard rate function of its continuous version. Discretization of the exponential distribution has been demonstrated. Applications of this approach have also been cited. Numerical calculations indicate that the proposed approach gives very good approximation of reliability of complex systems under stress-strength set-up. The performance of the proposed approach is better than the existing discrete concentration method of discretization. This approach is conceptually simple, handles analytic intractability and reduces computational time. The approach can be applied in manufacturing industries for producing high-reliable items.

Mechanical Properties and Released Gas Analysis of High Strength Concrete with Polypropylene and Raw Rice Husk under High Temperature Effect

When concrete is exposed to high temperatures, some changes may occur in its physical and mechanical properties. Especially, high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a well-known method. In high temperatures, PP decomposes and releases harmful gases such as CO and CO2. This study researches the use of raw rice husk (RRH) as a sustainable material, instead of PP fibers considering its several favorable properties, and its usability in HSC. RRH and PP fibers were incorporated in concrete at 0.5-3% and 0.2-0.5% by weight of cement, respectively. Concrete specimens were exposed to 20 (control), 300, 600 and 900°C. Under these temperatures, residual compressive and splitting tensile strength was determined. During the high temperature effect, the amount of released harmful gases was measured by a gas detector.

Study of Methylene Blue Dye Adsorption on to Activated Carbons from Olive Stones

Activated carbons were produced from olive stones by a chemical process. The activated carbon (AC) were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The activated carbons were characterized by nitrogen adsorption and enthalpy of immersion. Batch adsorption experiments were carried out to study the effect of initial different concentrations solution on dye adsorption properties. Isotherms were fitted to Langmuir model, and corresponding parameters were determined. The results showed that the increase of ration of ZnCl2 leads to increase in apparent surface areas and produces activated carbons with pore structure more developed. However, the maximum MB uptakes for all carbons were determined and correlated with activated carbons characteristics. 

Mathematical Modeling of Uncompetitive Inhibition of Bi-Substrate Enzymatic Reactions

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such a complex systems as a biological are. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides, it has been shown that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction. 

Limit State of Trapezoidal Metal Sheets Exposed to Concentrated Load

In most industrial compounds are used trapezoidal metal sheets like a roof decks. These trapezoidal metal sheets are exposed by concentrated loads, usually by service loads arise from installation of air distribution, sanitary distribution, sprinkler system or wiring installation. In objects of public facilities (like shopping centre, tennis hall, etc.) they can be used for hanging advertising posters etc, too. These systems work as “building kit”. These anchoring systems are represented by clamps in shape of “V”. This paper is occupy with recapitulation of installation systems available in trade with focus on load-bearing capacity specified by producer and on possible methods, how exactly define load bearing capacity of trapezoidal sheet loaded by concentrated load. The load bearing capacity was verified at experimental samples to determine real behavior of trapezoidal metal sheets exposed to concentrated loads.

Micro-Hydrokinetic for Remote Rural Electrification

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).