Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders

The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.

Islanding Detection Techniques for Synchronous Distributed Generation

The issue of unintentional islanding detection of grid connected synchronous distributed generation (SDG) remains the most challenging task faced by the distributed generation (DG) industry as SDG is highly capable of prolonging an island. This paper gives an insight of anti-islanding detection techniques mainly applied for SDG. Different techniques conclude that it is challenging to point out a generic method for a distinct purpose as the application of particular practice depends on nature of the end use and system dependent elements. Also, the setup and operational cost affect the selection of anti-islanding technique to achieve minimal compromising between cost and system quality. A test bench is created in the MATLAB/Simulink® to demonstrate the results of a 33 kV system. The results are highly satisfactory and they are according to the current practices.

The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

A Microwave Bandstop Filter Using Defected Microstrip Structure

In this paper, two bandstop filters resonating at 5.25 GHz and 7.3 GHz using Defected Microstrip Structure (DMS) are discussed. These slots are incorporated in the feed lines of filters to perform a serious LC resonance property in certain frequency and suppress the spurious signals. Therefore, this method keeps the filter size unchanged and makes a resonance frequency that is due to the abrupt change of the current path of the filter. If the application requires elimination of this band of frequencies, additional filter elements are required, which can only be accomplished by adding this DMS element resonant at desired frequency band rejection. The filters are optimized and simulated with Computer Simulation Technology (CST) tool.

Frank Norris’ McTeague: An Entropic Melodrama

According to Naturalistic principles, human destiny in the form of blind chance and determinism, entraps the individual, so man is a defenceless creature unable to escape from the ruthless paws of a stoical universe. In Naturalism; nonetheless, melodrama mirrors a conscious alternative with a peculiar function. A typical American Naturalistic character thus cannot be a subject for social criticism of American society since they are not victims of the ongoing virtual slavery, capitalist system, nor of a ruined milieu, but of their own volition, and more importantly, their character frailty. Through a Postmodern viewpoint, each Naturalistic work can encompass some entropic trends and changes culminating in an entire failure and devastation. Frank Norris in McTeague displays the futile struggles of ordinary men and how they end up brutes. McTeague encompasses intoxication, abuse, violation, and ruthless homicides. Norris’ depictions of the falling individual as a demon represent the entropic dimension of Naturalistic novels. McTeague’s defeat is somewhat his own fault, the result of his own blunders and resolution, not the result of sheer accident. Throughout the novel, each character is a kind of insane quester indicating McTeague’s decadence and, by inference, the decadence of Western civilisation. McTeague seems to designate Norris’ solicitude for a community fabricated by the elements of human negative demeanours and conducts hauling acute symptoms of infectious dehumanisation. The aim of this article is to illustrate how one specific negative human disposition gradually, like a running fire, can spread everywhere and burn everything in itself. The author applies the concept of entropy metaphorically to describe the individual devolutions that necessarily comprise community entropy in McTeague, a dying universe.

Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies

Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.

Identifying Temporary Housing Main Vertexes through Assessing Post-Disaster Recovery Programs

In the aftermath of a natural disaster, the major challenge most cities and societies face, regardless of their diverse level of prosperity, is to provide temporary housing (TH) for the displaced population (DP). However, the features of TH, which have been applied in previous recovery programs, greatly varied from case to case. This situation demonstrates that providing temporary accommodation for DP in a short period time and usually in great numbers is complicated in terms of satisfying all the beneficiaries’ needs, regardless of the societies’ welfare levels. Furthermore, when previously used strategies are applied to different areas, the chosen strategies are most likely destined to fail, unless the strategies are context and culturally based. Therefore, as the population of disaster-prone cities are increasing, decision-makers need a platform to help to determine all the factors, which caused the outcomes of the prior programs. To this end, this paper aims to assess the problems, requirements, limitations, potential responses, chosen strategies, and their outcomes, in order to determine the main elements that have influenced the TH process. In this regard, and in order to determine a customizable strategy, this study analyses the TH programs of five different cases as: Marmara earthquake, 1999; Bam earthquake, 2003; Aceh earthquake and tsunami, 2004; Hurricane Katrina, 2005; and, L’Aquila earthquake, 2009. The research results demonstrate that the main vertexes of TH are: (1) local characteristics, including local potential and affected population features, (2) TH properties, which needs to be considered in four phases: planning, provision/construction, operation, and second life, and (3) natural hazards impacts, which embraces intensity and type. Accordingly, this study offers decision-makers the opportunity to discover the main vertexes, their subsets, interactions, and the relation between strategies and outcomes based on the local conditions of each case. Consequently, authorities may acquire the capability to design a customizable method in the face of complicated post-disaster housing in the wake of future natural disasters.

Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

An Experimental Study of Structural, Optical and Magnetic Properties of Lithium Ferrite

Nanomaterials ferrites have applications in making permanent magnets, high density information devices, color imaging etc. In the present examination, lithium ferrite is synthesized by sol-gel process. The x-ray diffraction (XRD) result shows that the structure of lithium ferrite is monoclinic structure. The average particle size 22 nm is calculated by Scherer formula. The lattice parameters and dislocation density (δ) are calculated from XRD data. Strain (ε) values are evaluated from Williamson – hall plot. The FT-IR study reveals the formation of ferrites showing the significant absorption bands. The VU-VIS spectroscopic data is used to calculate direct and indirect optical band gap (Eg) of 1.57eV and 1.01eV respectively for lithium ferrite by using Tauc plot at the edge of the absorption band. The energy dispersive x-ray analysis spectra showed that the expected elements exist in the material. The magnetic behaviour of the materials studied using vibrating sample magnetometer (VSM).

Hybrid Living: Emerging Out of the Crises and Divisions

The paper will focus on the hybrid living typologies which are brought about due to the Global Crisis. Mixing of the generations and the groups of people, mingling the functions of living with working and socializing, merging the act of living in synergy with the urban realm and its constituent elements will be the springboard of proposing an essential sustainable housing approach and the respective urban development. The thematic will be based on methodologies developed both on the academic, educational environment including participation of students’ research and on the practical aspect of architecture including case studies executed by the author in the island of Cyprus. Both paths of the research will deal with the explorative understanding of the hybrid ways of living, testing the limits of its autonomy. The evolution of the living typologies into substantial hybrid entities, will deal with the understanding of new ways of living which include among others: re-introduction of natural phenomena, accommodation of the activity of work and services in the living realm, interchange of public and private, injections of communal events into the individual living territories. The issues and the binary questions raised by what is natural and artificial, what is private and what public, what is ephemeral and what permanent and all the in-between conditions are eloquently traced in the everyday life in the island. Additionally, given the situation of Cyprus with the eminent scar of the dividing ‘Green line’ and the waiting of the ‘ghost city’ of Famagusta to be resurrected, the conventional way of understanding the limits and the definitions of the properties is irreversibly shaken. The situation is further aggravated by the unprecedented phenomenon of the crisis on the island. All these observations set the premises of reexamining the urban development and the respective sustainable housing in a synergy where their characteristics start exchanging positions, merge into each other, contemporarily emerge and vanish, changing from permanent to ephemeral. This fluidity of conditions will attempt to render a future of the built- and unbuilt realm where the main focusing point will be redirected to the human and the social. Weather and social ritual scenographies together with ‘spontaneous urban landscapes’ of ‘momentary relationships’ will suggest a recipe for emerging urban environments and sustainable living. Thus, the paper will aim at opening a discourse on the future of the sustainable living merged in a sustainable urban development in relation to the imminent solution of the division of island, where the issue of property became the main obstacle to be overcome. At the same time, it will attempt to link this approach to the global need for a sustainable evolution of the urban and living realms.

Constructing Masculinity through Images: Content Analysis of Lifestyle Magazines in Croatia

Diverse social, cultural and economic trends and changes in contemporary societies influence the ways masculinity is represented in a variety of media. Masculinity is constructed within media images as a dynamic process that changes slowly over time and is shaped by various social factors. In many societies, dominant masculinity is still associated with authority, heterosexuality, marriage, professional and financial success, ethnic dominance and physical strength. But contemporary media depict men in ways that suggest a change in the approach to media images. The number of media images of men, which promote men’s identity through their body, have increased. With the male body more scrutinized and commodified, it is necessary to highlight how the body is represented and which visual elements are crucial since the body has an important role in the construction of masculinities. The study includes content analysis of male body images in the advertisements of different men’s and women’s lifestyle magazines available in Croatia. The main aim was to explore how masculinities are currently being portrayed through body regarding age, physical appearance, fashion, touch and gaze. The findings are also discussed in relation to female images since women are central in many of the processes constructing masculinities and according to the recent conceptualization of masculinity. Although the construction of male images varies through body features, almost all of them convey the message that men’s identity could be managed through manipulation and by enhancing the appearance. Furthermore, they suggest that men should engage in “bodywork” through advertised products, activities and/or practices, in order to achieve their preferred social image.

Fragility Assessment for Vertically Irregular Buildings with Soft Storey

Seismic behavior of irregular structures through the past decades indicate that the stated buildings do not have appropriate performance. Among these subjects, the current paper has investigated the behavior of special steel moment frame with different configuration of soft storey vertically. The analyzing procedure has been evaluated with respect to incremental dynamic analysis (IDA), and numeric process was carried out by OpenSees finite element analysis package. To this end, nine 2D steel frames, with different numbers of stories and irregularity positions, which were subjected to seven pairs of ground motion records orthogonally with respect to Ibarra-Krawinkler deterioration model, have been investigated. This paper aims at evaluating the response of two-dimensional buildings incorporating soft storey which subjected to bi-directional seismic excitation. The IDAs were implemented for different stages of PGA with various ground motion records, in order to determine maximum inter-storey drift ratio. According to statistical elements and fracture range (standard deviation), the vulnerability or exceedance from above-mentioned cases has been examined. For this reason, fragility curves for different placement of soft storey in the first, middle and the last floor for 4, 8, and 16 storey buildings have been generated and compared properly.

Study of Icons in Enterprise Application Software Context

Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.

Hydrogeological Factors of the Ore Genesis in the Sedimentary Basins

The present work was made for the purpose of evaluating the interstitial water’s role in the mobilization of metal elements of clay deposits and occurrences in sedimentary formation in the hydro-geological basins. The experiments were performed by using a special facility, which allows adjusting the pressure, temperature, and the frequency of the acoustic vibrations. The dates for study were samples of the oil shales (Baltic career, O2kk) and clay rocks, mainly montmorillonite composition (Borehole SG-12000, the depth of selection 1000–3600 m, the Azov-Kuban trough, N1). After interstitial water squeezing from the rock samples, decrease in the original content of the rock forming components including trace metals V, Cr, Co, Ni, Cu, Zn, Zr, Mo, Pb, W, Ti, and others was recorded. The experiments made it possible to evaluate the ore elements output and organic matters with the interstitial waters. Calculations have shown that, in standard conditions, from each ton of the oil shales, 5-6 kg of ore elements and 9-10 kg of organic matter can be escaped. A quantity of matter, migrating from clays in the process of solidification, is changed depending on the lithogenesis stage: more recent unrealized deposits lose more ore and organic materials than the clay rocks, selected from depth over 3000 m. Each ton of clays in the depth interval 1000-1500 m is able to generate 3-5 kg of the ore elements and 6-8 kg of the organic matters. The interstitial waters are a freight forwarder over transferring these matters in the reservoir beds. It was concluded that the interstitial waters which escaped from the study samples are solutions with abnormal high concentrations of the metals and organic matters. In the discharge zones of the sediment basins, such fluids can create paragenetic associations of the sedimentary-catagenetic ore and hydrocarbon mineral resources accumulations.

Frequency Response of Complex Systems with Localized Nonlinearities

Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models.

Identification of Factors Influencing Costs in Green Projects

Cost has always been the leading concern in green building development. The perception that construction cost for green building is higher than conventional buildings has only made the discussion of green building cost more difficult. Understanding the factors that will influence the cost of green construction is expected to shed light into what makes green construction more or at par with conventional projects, or perhaps, where cost can be optimised. This paper identifies the elements of cost before shifting the attention to the influencing factors. Findings from past studies uncovered various factors related to cost which are grouped into five focal themes i.e. awareness, knowledge, financial, technical, and government support. A conceptual framework is produced in a form of a flower diagram indicating the cost influencing factors of green building development. These factors were found to be both physical and non-physical aspects of a project. The framework provides ground for the next stage of research that is to further explore how these factors influence the project cost and decision making.

Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain

Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.

A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness

This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.

Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes

The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.

The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides

The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.