The Effect of Combining Real Experimentation With Virtual Experimentation on Students-Success

The purpose of this study was to investigate the effect of combining Real Experimentation (RE) With Virtual Experimentation (VE) on students- conceptual understanding of photo electric effect. To achieve this, a pre–post comparison study design was used that involved 46 undergraduate students. Two groups were set up for this study. Participants in the control group used RE to learn photo electric effect, whereas, participants in the experimental group used RE in the first part of the curriculum and VE in another part. Achievement test was given to the groups before and after the application as pre-test and post test. The independent samples t- test, one way Anova and Tukey HSD test were used for testing the data obtained from the study. According to the results of analyzes, the experimental group was found more successful than the control group.

A Novel Dual-Purpose Image Watermarking Technique

Image watermarking has proven to be quite an efficient tool for the purpose of copyright protection and authentication over the last few years. In this paper, a novel image watermarking technique in the wavelet domain is suggested and tested. To achieve more security and robustness, the proposed techniques relies on using two nested watermarks that are embedded into the image to be watermarked. A primary watermark in form of a PN sequence is first embedded into an image (the secondary watermark) before being embedded into the host image. The technique is implemented using Daubechies mother wavelets where an arbitrary embedding factor α is introduced to improve the invisibility and robustness. The proposed technique has been applied on several gray scale images where a PSNR of about 60 dB was achieved.

Fuzzy Predictive Pursuit Guidance in the Homing Missiles

A fuzzy predictive pursuit guidance is proposed as an alternative to the conventional methods. The purpose of this scheme is to obtain a stable and fast guidance. The noise effects must be reduced in homing missile guidance to get an accurate control. An aerodynamic missile model is simulated first and a fuzzy predictive pursuit control algorithm is applied to reduce the noise effects. The performance of this algorithm is compared with the performance of the classical proportional derivative control. Stability analysis of the proposed guidance method is performed and compared with the stability properties of other guidance methods. Simulation results show that the proposed method provides the satisfying performance.

Semi-Automatic Trend Detection in Scholarly Repository Using Semantic Approach

Currently WWW is the first solution for scholars in finding information. But, analyzing and interpreting this volume of information will lead to researchers overload in pursuing their research. Trend detection in scientific publication retrieval systems helps scholars to find relevant, new and popular special areas by visualizing the trend of input topic. However, there are few researches on trend detection in scientific corpora while their proposed models do not appear to be suitable. Previous works lack of an appropriate representation scheme for research topics. This paper describes a method that combines Semantic Web and ontology to support advance search functions such as trend detection in the context of scholarly Semantic Web system (SSWeb).

Financial Regulations in the Process of Global Financial Crisis and Macroeconomics Impact of Basel III

Basel III (or the Third Basel Accord) is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk agreed upon by the members of the Basel Committee on Banking Supervision in 2010-2011, and scheduled to be introduced from 2013 until 2018. Basel III is a comprehensive set of reform measures. These measures aim to; (1) improve the banking sector-s ability to absorb shocks arising from financial and economic stress, whatever the source, (2) improve risk management and governance, (3) strengthen banks- transparency and disclosures. Similarly the reform target; (1) bank level or micro-prudential, regulation, which will help raise the resilience of individual banking institutions to periods of stress. (2) Macro-prudential regulations, system wide risk that can build up across the banking sector as well as the pro-cyclical implication of these risks over time. These two approaches to supervision are complementary as greater resilience at the individual bank level reduces the risk system wide shocks. Macroeconomic impact of Basel III; OECD estimates that the medium-term impact of Basel III implementation on GDP growth is in the range -0,05 percent to -0,15 percent per year. On the other hand economic output is mainly affected by an increase in bank lending spreads as banks pass a rise in banking funding costs, due to higher capital requirements, to their customers. Consequently the estimated effects on GDP growth assume no active response from monetary policy. Basel III impact on economic output could be offset by a reduction (or delayed increase) in monetary policy rates by about 30 to 80 basis points. The aim of this paper is to create a framework based on the recent regulations in order to prevent financial crises. Thus the need to overcome the global financial crisis will contribute to financial crises that may occur in the future periods. In the first part of the paper, the effects of the global crisis on the banking system examine the concept of financial regulations. In the second part; especially in the financial regulations and Basel III are analyzed. The last section in this paper explored the possible consequences of the macroeconomic impacts of Basel III.

Effect of Impact Location upon Sub-Impacts between Beam and Block

The present investigation is concerned with sub-impacts taken placed when a rigid hemispherical-head block transversely impacts against a beam at different locations. Dynamic substructure technique for elastic-plastic impact is applied to solve numerically this problem. The time history of impact force and energy exchange between block and beam are obtained. The process of sub-impacts is analyzed from the energy exchange point of view. The results verify the influences of the impact location on impact duration, the first sub-impact and energy exchange between the beam and the block.

Simulation of Dynamics of a Permanent Magnet Linear Actuator

Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first a set of static magnetic filed analysis is carried out and then the electric circuit and mechanical motion equations are solved employing bi-cubic spline approximations of the field analysis results. The results show that the proposed decoupled model is of satisfactory accuracy and gives more flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads.

Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization

We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.

A Method of Protecting Relational Databases Copyright with Cloud Watermark

With the development of Internet and databases application techniques, the demand that lots of databases in the Internet are permitted to remote query and access for authorized users becomes common, and the problem that how to protect the copyright of relational databases arises. This paper simply introduces the knowledge of cloud model firstly, includes cloud generators and similar cloud. And then combined with the property of the cloud, a method of protecting relational databases copyright with cloud watermark is proposed according to the idea of digital watermark and the property of relational databases. Meanwhile, the corresponding watermark algorithms such as cloud watermark embedding algorithm and detection algorithm are proposed. Then, some experiments are run and the results are analyzed to validate the correctness and feasibility of the watermark scheme. In the end, the foreground of watermarking relational database and its research direction are prospected.

A Programmer’s Survey of the Quantum Computing Paradigm

Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.

NonStationary CMA for Decision Feedback Equalization of Markovian Time Varying Channels

In this paper, we propose a modified version of the Constant Modulus Algorithm (CMA) tailored for blind Decision Feedback Equalizer (DFE) of first order Markovian time varying channels. The proposed NonStationary CMA (NSCMA) is designed so that it explicitly takes into account the Markovian structure of the channel nonstationarity. Hence, unlike the classical CMA, the NSCMA is not blind with respect to the channel time variations. This greatly helps the equalizer in the case of realistic channels, and avoids frequent transmissions of training sequences. This paper develops a theoretical analysis of the steady state performance of the CMA and the NSCMA for DFEs within a time varying context. Therefore, approximate expressions of the mean square errors are derived. We prove that in the steady state, the NSCMA exhibits better performance than the classical CMA. These new results are confirmed by simulation. Through an experimental study, we demonstrate that the Bit Error Rate (BER) is reduced by the NSCMA-DFE, and the improvement of the BER achieved by the NSCMA-DFE is as significant as the channel time variations are severe.

Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method

An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.

Investigation of Effective Parameters on Annealing and Hot Spotting Processes for Straightening of Bent Turbine Rotors

The most severe damage of the turbine rotor is its distortion. The rotor straightening process must lead, at the first stage, to removal of the stresses from the material by annealing and next, to straightening of the plastic distortion without leaving any stress by hot spotting. The straightening method does not produce stress accumulations and the heating technique, developed specifically for solid forged rotors and disks, enables to avoid local overheating and structural changes in the material. This process also does not leave stresses in the shaft material. An experimental study of hot spotting is carried out on a large turbine rotor and some of the most important effective parameters that must be considered on annealing and hot spotting processes are investigated in this paper.

Adaptive Gaussian Mixture Model for Skin Color Segmentation

Skin color based tracking techniques often assume a static skin color model obtained either from an offline set of library images or the first few frames of a video stream. These models can show a weak performance in presence of changing lighting or imaging conditions. We propose an adaptive skin color model based on the Gaussian mixture model to handle the changing conditions. Initial estimation of the number and weights of skin color clusters are obtained using a modified form of the general Expectation maximization algorithm, The model adapts to changes in imaging conditions and refines the model parameters dynamically using spatial and temporal constraints. Experimental results show that the method can be used in effectively tracking of hand and face regions.

Bioconversion of Biodiesel Derived Crude Glycerol by Immobilized Clostridium pasteurianum: Effect of Temperature

Batch fermentation of 5, 10 and 25 g/L biodiesel derived crude glycerol was carried out at 30, 37 and 450C by Clostridium pasteurianum cells immobilized on silica. Maximum yield of 1,3-propanediol (PDO) (0.60 mol/mol), and ethanol (0.26 mol/mol) were obtained from 10 g/L crude glycerol at 30 and 370C respectively. Maximum yield of butanol (0.28 mol/mol substrate added) was obtained at 370C with 25 g/L substrate. None of the three products were detected at 45oC even after 10 days of fermentation. Only traces of ethanol (0.01 mol/mol) were detected at 450C with 5 g/L substrate. The results obtained for 25 g/L substrate utilization were fitted in first order rate equation to obtain the values of rate constant at three different temperatures for bioconversion of glycerol. First order rate constants for bioconversion of glycerol at 30, 37 and 45oC were found to be 0.198, 0.294 and 0.029/day respectively. Activation energy (Ea) for crude glycerol bioconversion was calculated to be 57.62 kcal/mol.

A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method

One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.

Stochastic Scheduling to Minimize Expected Lateness in Multiple Identical Machines

There are many real world problems in which parameters like the arrival time of new jobs, failure of resources, and completion time of jobs change continuously. This paper tackles the problem of scheduling jobs with random due dates on multiple identical machines in a stochastic environment. First to assign jobs to different machine centers LPT scheduling methods have been used, after that the particular sequence of jobs to be processed on the machine have been found using simple stochastic techniques. The performance parameter under consideration has been the maximum lateness concerning the stochastic due dates which are independent and exponentially distributed. At the end a relevant problem has been solved using the techniques in the paper..

An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model

In this paper, we explore the applicability of the Sinc- Collocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies.

Aliveness Detection of Fingerprints using Multiple Static Features

Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.

Conceptual Overview of Housing Affordability in Selangor, Malaysia

Socioeconomic stability and development of a country, can be describe by housing affordability. It is aimed to ensure the housing provided as one of the key factors that is affordable by every income earner group whether low-income, middle income and high income group. This research carried out is to find out affordability of home ownership level for first medium cost landed-house by the middle-income group in Selangor, Malaysia. It is also hope that it could be seen as able to contribute to the knowledge and understanding on housing affordability level for the middleincome group and variables that influenced the medium income group-s ability to own first medium-cost houses.