Modeling and Parametric Study for CO2/CH4 Separation Using Membrane Processes

The upgrading of low quality crude natural gas (NG) is attracting interest due to high demand of pipeline-grade gas in recent years. Membrane processes are commercially proven technology for the removal of impurities like carbon dioxide from NG. In this work, cross flow mathematical model has been suggested to be incorporated with ASPEN HYSYS as a user defined unit operation in order to design the membrane system for CO2/CH4 separation. The effect of operating conditions (such as feed composition and pressure) and membrane selectivity on the design parameters (methane recovery and total membrane area required for the separation) has been studied for different design configurations. These configurations include single stage (with and without recycle) and double stage membrane systems (with and without permeate or retentate recycle). It is shown that methane recovery can be improved by recycling permeate or retentate stream as well as by using double stage membrane systems. The ASPEN HYSYS user defined unit operation proposed in the study has potential to be applied for complex membrane system design and optimization.

Energy Systems and Crushing Behavior of Fiber Reinforced Composite Materials

Effect of geometry on crushing behavior, energy absorption and failure mode of woven roving jute fiber/epoxy laminated composite tubes were experimentally studied. Investigations were carried out on three different geometrical types of composite tubes (circular, square and radial corrugated) subjected to axial compressive loading. It was observed in axial crushing study that the load bearing capability is significantly influenced by corrugation geometry. The influence of geometries of specimens was supported by the plotted load – displacement curves of the tests.

Thermal Management of Space Power Electronics using TLM-3D

When designing satellites, one of the major issues aside for designing its primary subsystems is to devise its thermal. The thermal management of satellites requires solving different sets of issues with regards to modelling. If the satellite is well conditioned all other parts of the satellite will have higher temperature no matter what. The main issue of thermal modelling for satellite design is really making sure that all the other points of the satellite will be within the temperature limits they are designed. The insertion of power electronics in aerospace technologies is becoming widespread and the modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. This paper presents a Three-Dimensional Modal Transmission Line Matrix (3D-TLM) implementation of transient heat flow in space power electronics. In such kind of components heat dissipation and good thermal management are essential. Simulation provides the cheapest tool to investigate all aspects of power handling. The 3DTLM has been successful in modeling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The results show a three-dimensional visualisation of self-heating phenomena in the device affected by outer space constraints, and will presents possible approaches for increasing the heat dissipation capability of the power modules.

An Example of Post-Harvest Thermotherapy as a Non-Chemical Method of Pathogen Control on Apples of Topaz Cultivar in Storage

Huge losses in apple production are caused by pathogens that cannot be seen shortly after harvest. After-harvest thermotherapy treatments can considerably improve control of storage diseases on apples and become an alternative to chemical pesticides. In the years 2010-2012 carried out research in this area. Apples of 'Topaz' cultivar were harvested at optimal maturity time for long storage and subject to water bath treatment at 45, 50, 52, 55°C for 60, 120, 180 and 240 seconds. The control was untreated fruits. After 12 and 24 weeks and during so called simulated trade turnover the fruits were checked for their condition and the originators of diseases were determined by using the standard phytopathological methods. The most common originator of 'Topaz' apple infection during storage were the fungi of genus Gloeosporium. In this paper it was proven that for effective protection of 'Topaz' apples against diseases, thermotherapy by using water treatments at temperature range of 50-52°C is quite sufficient.

The Effect of Binahong to Hematoma

In elevating performance in competetive sports, an athlete must continously train in achieving maximum performance,but needs to pay attention to recovery therapy, that is to recover from fatigue as well as injury.The correct recovery therapy will assist in process of recovery and helps in the training in achieving better performace. Binahong (Anredera cordifolia) was proven empirically by the locals in assisting speedy recovery from an injury.Clinical research with lab animals receiving blunt trauma injury, microscopically shown signs of: 1) redness, 2) heatiness, 3) swelling and, 4) lack of activity. There is also microscopic indication of: 1) infiltration of inflame cells (migration of cells to the trauma area), 2) Cells necrosis, 3) Congestion (as a result of dead red blood cells), 4) uedema. On administration of Binahong for 3 days, there is a significant drop of 5% in cell inflammation, 2% increase of fibroblast (cell membrance) count.Conclutin: Binahong do assist in reducing cell inflammation and increase counts of cells fibroblast. Suggestion: In helping athlete's to recover from force injury, we need study about Binahong's roots to inflammation cell and healing of injuried cell.

The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis

To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.

Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Detection of Pathogenic Escherichia coli Strains Pollution in Red Deer Meat in Latvia and Determination the Compatibility of VT1, VT2, eae A Genes in their Isolate

Tasks of the work were study the possible E.coli contamination in red deer meat, identify pathogenic strains from isolated E.coli, determine their incidence in red deer meat and determine the presence of VT1, VT2 and eaeA genes for the pathogenic E.coli. 8 (10%) samples were randomly selected from 80 analysed isolates of E.coli and PCR reaction was performed on them. PCR was done both on initial materials – samples of red deer meat - and for already isolated liqueurs. Two of analysed venison samples contain verotoxin-producing strains of E. coli. It means that this meat is not safe to consumer. It was proven by the sequestration reaction of E. coli and by comparison of the obtained results with the database of microorganism genome available on the internet that the isolated culture corresponds to region 16S rDNS of E. coli thus presenting correctness of the microbiological methods.

Pilot-scale Study of Horizontal Anaerobic Digester for Biogas Production using Food Waste

A horizontal anaerobic digester was developed and tested in pilot scale for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal digester. A mixer of the horizontal digester was designed to easily remove the sediment in the bottom and scum layers on surface in the digester. Experimental result for 120 days of operation of the pilot plant showed a high removal efficiency of 81.2% for organic substance and high stability during the whole operation period were acquired. Also food waste was treated at high organic loading rates over 4 kg•VS/m3∙day and a methane gas production rate of 0.62 m3/kg•VSremoved was accomplished. The biological desulfurization equipment inside the horizontal digester was proven to be an economic and effective method to reduce the biogas desulfurization cost by removing hydrogen sulfide more than 90% without external desulfurization equipments.

Effects of Temperature on Resilient Modulus of Dense Asphalt Mixtures Incorporating Steel Slag Subjected to Short Term Oven Ageing

As the resources for naturally occurring aggregates diminished at an ever increasing rate, researchers are keen to utilize recycled materials in road construction in harmony with sustainable development. Steel slag, a waste product from the steel making industry, is one of the recycled materials reported to exhibit great potential to replace naturally occurring aggregates in asphalt mixtures. This paper presents the resilient modulus properties of steel slag asphalt mixtures subjected to short term oven ageing (STOA). The resilient modulus test was carried out to evaluate the stiffness of asphalt mixtures at 10ºC, 25ºC and 40ºC. Previous studies showed that stiffness changes in asphalt mixture played an important role in inflicting pavement distress particularly cracking and rutting that are common at low and high temperatures respectively. Temperature was found to significantly influence the resilient modulus of asphalt mixes. The resilient modulus of the asphalt specimens tested decreased by more than 90% when the test temperature increased from 10°C to 40°C.

Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model

Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.

Determination of Moisture Content and Liquid Limit of Foundations Soils, using Microwave Radiation, in the Different Locations of Sulaimani Governorate, Kurdistan Region-Iraq

Soils are normally dried in either a convection oven or stove. Laboratory moisture content testing indicated that the typical drying durations for a convection oven were, 24 hours. The purpose of this study was to determine the accuracy and soil drying duration of both, moisture content and liquid limit using microwave radiation. The soils were tested with both, convection and microwave ovens. The convection oven was considered to produce the true values for both, natural moisture content and liquid limit of soils; it was, therefore, used as a basis for comparison for the results of the microwave ovens. The samples used in this study were obtained from different projects of Consulting Engineering Bureau of College of Engineering of Sulaimani University. These samples were collected from different locations and at the different depths and consist mostly of brown and light brown clay and silty clay. A total of 102 samples were prepared. 26 of them were tested for natural moisture determination, while the other 76 were used for liquid limits determination

Peer Assessment in the Context of Project-Based Learning Online

The pedagogy project has been proven as an active learning method, which is used to develop learner-s skills and knowledge.The use of technology in the learning world, has filed several gaps in the implementation of teaching methods, and online evaluation of learners. However, the project methodology presents challenges in the assessment of learners online. Indeed, interoperability between E-learning platforms (LMS) is one of the major challenges of project-based learning assessment. Firstly, we have reviewed the characteristics of online assessment in the context of project-based teaching. We addressed the constraints encountered during the peer evaluation process. Our approach is to propose a meta-model, which will describe a language dedicated to the conception of peer assessment scenario in project-based learning. Then we illustrate our proposal by an instantiation of the meta-model through a business process in a scenario of collaborative assessment on line.

Experimental Investigation of Heat Transfer and Flow of Nano Fluids in Horizontal Circular Tube

We have measured the pressure drop and convective heat transfer coefficient of water – based AL(25nm),AL2O3(30nm) and CuO(50nm) Nanofluids flowing through a uniform heated circular tube in the fully developed laminar flow regime. The experimental results show that the data for Nanofluids friction factor show a good agreement with analytical prediction from the Darcy's equation for single-phase flow. After reducing the experimental results to the form of Reynolds, Rayleigh and Nusselt numbers. The results show the local Nusselt number and temperature have distribution with the non-dimensional axial distance from the tube entry. Study decided that thenNanofluid as Newtonian fluids through the design of the linear relationship between shear stress and the rate of stress has been the study of three chains of the Nanofluid with different concentrations and where the AL, AL2O3 and CuO – water ranging from (0.25 - 2.5 vol %). In addition to measuring the four properties of the Nanofluid in practice so as to ensure the validity of equations of properties developed by the researchers in this area and these properties is viscosity, specific heat, and density and found that the difference does not exceed 3.5% for the experimental equations between them and the practical. The study also demonstrated that the amount of the increase in heat transfer coefficient for three types of Nano fluid is AL, AL2O3, and CuO – Water and these ratios are respectively (45%, 32%, 25%) with insulation and without insulation (36%, 23%, 19%), and the statement of any of the cases the best increase in heat transfer has been proven that using insulation is better than not using it. I have been using three types of Nano particles and one metallic Nanoparticle and two oxide Nanoparticle and a statement, whichever gives the best increase in heat transfer.

Carrageenan Properties Extracted From Eucheuma cottonii, Indonesia

The effect of extraction solvent upon properties of carrageenan from Eucheuma cottonii was studied. The distilled water and KOH solution (concentration 0.1- 0.5N) were used as the solvent. Extraction process was carried out in water bath equipped by stirrer with constant speed of 275 rpm with a constant ratio of seaweed weight to solvent volume ( 1:50 g/mL) at 86oC for 45 minutes. The extract was then precipitated in 3 volume of 90% ethanol, oven dried at 60oC. Based on experimental data, alkali significantly influenced yield and properties of extracted carrageenan. The extracted carrageenan was found to have essentially identical FTIR spectra to the reference samples of kappa-carrageenan. Increasing the KOH concentration led to carrageenan containing less sulfate content and intrinsic viscosity. The gel strength increased along with the increasing of KOH concentration. The decreasing of intrinsic viscosity value indicates that a polymer degradation occurs during alkali extraction.

Mode III Interlaminar Fracture in Woven Glass/Epoxy Composite Laminates

In the present study, fracture behavior of woven fabric-reinforced glass/epoxy composite laminates under mode III crack growth was experimentally investigated and numerically modeled. Two methods were used for the calculation of the strain energy release rate: the experimental compliance calibration (CC) method and the Virtual Crack Closure Technique (VCCT). To achieve this aim ECT (Edge Crack Torsion) was used to evaluate fracture toughness in mode III loading (out of plane-shear) at different crack lengths. Load–displacement and associated energy release rates were obtained for various case of interest. To calculate fracture toughness JIII, two criteria were considered including non-linearity and maximum points in load-displacement curve and it is observed that JIII increases with the crack length increase. Both the experimental compliance method and the virtual crack closure technique proved applicable for the interpretation of the fracture mechanics data of woven glass/epoxy laminates in mode III.

An Experimental Study on the Tensile Behavior of the Cracked Aluminum Plates Repaired with FML Composite Patches

Repairing of the cracks by fiber metal laminates (FMLs) was first done by some aeronautical laboratories in early 1970s. In this study, experimental investigations were done on the effect of repairing the center-cracked aluminum plates using the FML patches. The repairing processes were conducted to characterize the response of the repaired structures to tensile tests. The composite patches were made of one aluminum layer and two woven glassepoxy composite layers. Three different crack lengths in three crack angles and different patch lay-ups were examined. It was observed for the lengthen cracks, the effect of increasing the crack angle on ultimate tensile load in the structure was increase. It was indicated that the situation of metal layer in the FML patches had an important effect on the tensile response of the tested specimens. It was found when the aluminum layer is farther, the ultimate tensile load has the highest amount.

Classification of Fuzzy Petri Nets, and Their Applications

Petri Net (PN) has proven to be effective graphical, mathematical, simulation, and control tool for Discrete Event Systems (DES). But, with the growth in the complexity of modern industrial, and communication systems, PN found themselves inadequate to address the problems of uncertainty, and imprecision in data. This gave rise to amalgamation of Fuzzy logic with Petri nets and a new tool emerged with the name of Fuzzy Petri Nets (FPN). Although there had been a lot of research done on FPN and a number of their applications have been anticipated, but their basic types and structure are still ambiguous. Therefore, in this research, an effort is made to categorize FPN according to their structure and algorithms Further, literature review of the applications of FPN in the light of their classifications has been done.

Examining Herzberg-s Two Factor Theory in a Large Chinese Chemical Fiber Company

The validity of Herzberg-s Two-Factor Theory of Motivation was tested empirically by surveying 2372 chemical fiber employees in 2012. In the valid sample of 1875 respondents, the degree of overall job satisfaction was more than moderate. The most highly valued components of job satisfaction were: “corporate image," “collaborative working atmosphere," and “supervisor-s expertise"; whereas the lowest mean score was 34.65 for “job rotation and promotion." The top three job retention options rated by the participants were “good image of the enterprise," “good compensation," and “workplace is close to my residence." The overall evaluation of the level of thriving facilitation workplace reached almost to “mostly agree." For those participants who chose at least one motivator as their job retention options had significantly greater job satisfaction than those who chose only hygiene factors as their retention options. Therefore, Herzberg-s Two-Factor Theory of Motivation was proven valid in this study.

Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites

Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.