Adaptive Helmholtz Resonator in a Hydraulic System

An adaptive Helmholtz resonator was designed and adapted to hydraulics. The resonator was controlled by open- and closed-loop controls so that 20 dB attenuation of the peak-to-peak value of the pulsating pressure was maintained. The closed-loop control was noted to be better, albeit it was slower because of its low pressure and temperature variation, which caused variation in the effective bulk modulus of the hydraulic system. Low-pressure hydraulics contains air, which affects the stiffness of the hydraulics, and temperature variation changes the viscosity of the oil. Thus, an open-loop control loses its efficiency if a condition such as temperature or the amount of air changes after calibration. The instability of the low-pressure hydraulic system reduced the operational frequency range of the Helmholtz resonator when compared with the results of an analytical model. Different dampers for hydraulics are presented. Then analytical models of a hydraulic pipe and a hydraulic pipe with a Helmholtz resonator are presented. The analytical models are based on the wave equation of sound pressure. Finally, control methods and the results of experiments are presented.

Grey Prediction Based Handoff Algorithm

As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.

Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)

An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.

Response of Wax Apple Cultivars by Applied GA3 and 2,4-D on Fruit Growth and Fruit Quality

The experiment was performed to evaluate the effect of GA3, 2,4-D on fruit growth and fruit quality of wax apple. The experiment consisted of Red A, Monulla, Atu, Red B cultivars. GA3 and 2,4-D were applied at the small bud and petal fall stage. Physiological, biochemical characters of fruit were recoded. The result showed application of GA3, 2,4-D greatly response in increasing fruit set for all treatment as compared to control. Fruit weight, fruit size were increased at 10 ppm 2,4-D in ‘Red A’, ‘Red B’, however it was also enhancing at 10 ppm GA3 in ‘Monulla’, ‘Atu’. For ‘Monulla’, ‘Atu’ fruit crack reduced by 10 ppm 2,4-D application, but ‘Red B’, ‘Red A’ gave least fruit crack at 10 and 30 ppm GA3, respectively. ‘Monulla’, ‘Atu’ and ‘Red B’ resulted in response well to 10 ppm GA3 on improving TSS, whereas application of 30 ppm GA3 greatly enhancing TSS in ‘Red A’. For ‘Atu’ titratable acidity markedly reduced by 10 ppm GA3 application, but spraying with 30 ppm GA3 greatly response in reducing titratable acidity in ‘Red A’, ‘Red B’ and ‘Monulla’. It was concluded that GA3, 2,4-D can be an effective tool to enhancing fruit set, fruit growth as well as improving fruit quality of wax apple.

Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method

Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions.

A Simulation Study of Bullwhip Effect in a Closed-Loop Supply Chain with Fuzzy Demand and Fuzzy Collection Rate under Possibility Constraints

Along with forward supply chain organization needs to consider the impact of reverse logistics due to its economic advantage, social awareness and strict legislations. In this paper, we develop a system dynamics framework for a closed-loop supply chain with fuzzy demand and fuzzy collection rate by incorporating product exchange policy in forward channel and various recovery options in reverse channel. The uncertainty issues associated with acquisition and collection of used product have been quantified using possibility measures. In the simulation study, we analyze order variation at both retailer and distributor level and compare bullwhip effects of different logistics participants over time between the traditional forward supply chain and the closed-loop supply chain. Our results suggest that the integration of reverse logistics can reduce order variation and bullwhip effect of a closed-loop system. Finally, sensitivity analysis is performed to examine the impact of various parameters on recovery process and bullwhip effect.

Real-Time Vision-based Korean Finger Spelling Recognition System

Finger spelling is an art of communicating by signs made with fingers, and has been introduced into sign language to serve as a bridge between the sign language and the verbal language. Previous approaches to finger spelling recognition are classified into two categories: glove-based and vision-based approaches. The glove-based approach is simpler and more accurate recognizing work of hand posture than vision-based, yet the interfaces require the user to wear a cumbersome and carry a load of cables that connected the device to a computer. In contrast, the vision-based approaches provide an attractive alternative to the cumbersome interface, and promise more natural and unobtrusive human-computer interaction. The vision-based approaches generally consist of two steps: hand extraction and recognition, and two steps are processed independently. This paper proposes real-time vision-based Korean finger spelling recognition system by integrating hand extraction into recognition. First, we tentatively detect a hand region using CAMShift algorithm. Then fill factor and aspect ratio estimated by width and height estimated by CAMShift are used to choose candidate from database, which can reduce the number of matching in recognition step. To recognize the finger spelling, we use DTW(dynamic time warping) based on modified chain codes, to be robust to scale and orientation variations. In this procedure, since accurate hand regions, without holes and noises, should be extracted to improve the precision, we use graph cuts algorithm that globally minimize the energy function elegantly expressed by Markov random fields (MRFs). In the experiments, the computational times are less than 130ms, and the times are not related to the number of templates of finger spellings in database, as candidate templates are selected in extraction step.

A Hybrid Distributed Vision System for Robot Localization

Localization is one of the critical issues in the field of robot navigation. With an accurate estimate of the robot pose, robots will be capable of navigating in the environment autonomously and efficiently. In this paper, a hybrid Distributed Vision System (DVS) for robot localization is presented. The presented approach integrates odometry data from robot and images captured from overhead cameras installed in the environment to help reduce possibilities of fail localization due to effects of illumination, encoder accumulated errors, and low quality range data. An odometry-based motion model is applied to predict robot poses, and robot images captured by overhead cameras are then used to update pose estimates with HSV histogram-based measurement model. Experiment results show the presented approach could localize robots in a global world coordinate system with localization errors within 100mm.

Sprayer Boom Active Suspension Using Intelligent Active Force Control

The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.

A Dictionary Learning Method Based On EMD for Audio Sparse Representation

Sparse representation has long been studied and several dictionary learning methods have been proposed. The dictionary learning methods are widely used because they are adaptive. In this paper, a new dictionary learning method for audio is proposed. Signals are at first decomposed into different degrees of Intrinsic Mode Functions (IMF) using Empirical Mode Decomposition (EMD) technique. Then these IMFs form a learned dictionary. To reduce the size of the dictionary, the K-means method is applied to the dictionary to generate a K-EMD dictionary. Compared to K-SVD algorithm, the K-EMD dictionary decomposes audio signals into structured components, thus the sparsity of the representation is increased by 34.4% and the SNR of the recovered audio signals is increased by 20.9%.

Detection of Breast Cancer in the JPEG2000 Domain

Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.

Enhanced Shell Sorting Algorithm

Many algorithms are available for sorting the unordered elements. Most important of them are Bubble sort, Heap sort, Insertion sort and Shell sort. These algorithms have their own pros and cons. Shell Sort which is an enhanced version of insertion sort, reduces the number of swaps of the elements being sorted to minimize the complexity and time as compared to insertion sort. Shell sort improves the efficiency of insertion sort by quickly shifting values to their destination. Average sort time is O(n1.25), while worst-case time is O(n1.5). It performs certain iterations. In each iteration it swaps some elements of the array in such a way that in last iteration when the value of h is one, the number of swaps will be reduced. Donald L. Shell invented a formula to calculate the value of ?h?. this work focuses to identify some improvement in the conventional Shell sort algorithm. ''Enhanced Shell Sort algorithm'' is an improvement in the algorithm to calculate the value of 'h'. It has been observed that by applying this algorithm, number of swaps can be reduced up to 60 percent as compared to the existing algorithm. In some other cases this enhancement was found faster than the existing algorithms available.

Comparison Results of Two-point Fuzzy Boundary Value Problems

This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.

MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Probe Selection for Pathway-Specific Microarray Probe Design Minimizing Melting Temperature Variance

In molecular biology, microarray technology is widely and successfully utilized to efficiently measure gene activity. If working with less studied organisms, methods to design custom-made microarray probes are available. One design criterion is to select probes with minimal melting temperature variances thus ensuring similar hybridization properties. If the microarray application focuses on the investigation of metabolic pathways, it is not necessary to cover the whole genome. It is more efficient to cover each metabolic pathway with a limited number of genes. Firstly, an approach is presented which minimizes the overall melting temperature variance of selected probes for all genes of interest. Secondly, the approach is extended to include the additional constraints of covering all pathways with a limited number of genes while minimizing the overall variance. The new optimization problem is solved by a bottom-up programming approach which reduces the complexity to make it computationally feasible. The new method is exemplary applied for the selection of microarray probes in order to cover all fungal secondary metabolite gene clusters for Aspergillus terreus.

Fixture Layout Optimization for Large Metal Sheets Using Genetic Algorithm

The geometric errors in the manufacturing process can be reduced by optimal positioning of the fixture elements in the fixture to make the workpiece stiff. We propose a new fixture layout optimization method N-3-2-1 for large metal sheets in this paper that combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of the nodal deflection normal to the surface of the workpiece. Two different kinds of case studies are presented, and optimal position of the fixturing element is obtained for different cases.

Correction of Infrared Data for Electrical Components on a Board

In this paper, the data correction algorithm is suggested when the environmental air temperature varies. To correct the infrared data in this paper, the initial temperature or the initial infrared image data is used so that a target source system may not be necessary. The temperature data obtained from infrared detector show nonlinear property depending on the surface temperature. In order to handle this nonlinear property, Taylor series approach is adopted. It is shown that the proposed algorithm can reduce the influence of environmental temperature on the components in the board. The main advantage of this algorithm is to use only the initial temperature of the components on the board rather than using other reference device such as black body sources in order to get reference temperatures.

Performance of a Turbofan Engine with Intercooling and Regeneration

Pollution emission levels of aircraft engines are a nowadays high concern. Any technological advance that could reduce emission levels is always welcome. In what concerns aircraft engines, a possible solution for this problem could be the use of regenerators and intercoolers. These components might reduce the specific fuel consumption, increase efficiency and specific thrust and consequently reduce the pollution levels of the engine. This is not a novel solution. These heat exchangers are already is use in stationary engines. For aircraft engines, the extra weight of the needed hardware could overcome the fuel saved. This work compares a conventional engine with configurations that use intercoolers and regenerators.

Aureobasidium pullulans Used as a Biological Control Agent under Field Conditions Affects the Microbial Quality of Winter Wheat Grain

The biological activity of A. pullulans isolates against species of the genus Fusarium, bacteria of the genus Azotobacter and pseudomonads colonizing wheat kernels was evaluated. A field experiment was carried out in 2009-2011, in north-eastern Poland. Winter wheat (cv. Bogatka) plants were sprayed with a cell suspension of A. pullulans at a density of 106 - 108 per cm3 water at the stem elongation stage and the heading stage. Untreated plants served as control. The abundance of epiphytic yeasts, bacteria of the genus Azotobacter, pseudomonads and Fusarium pathogens on wheat grain was estimated at harvest and after six months’ storage. The average size of yeast communities was significantly greater on wheat kernels treated with a cell suspension of A. pullulans, compared with control samples. In 2010-2011, biological control reduced the abundance of some species of the genus Fusarium.

Corruption and International Business Community Is Integration into International Business ameans of Reducing Corruption?The case of Russia

The article examines an opportunity of corruption restriction exercised by international business community in Russia. Integration of Russian economy into the international business does not reduce corruption inside the country. Foreign actors investing in Russia under the condition of obtaining their required rates of returns will be reluctant to harm their investments by involving into anticorruption activities. Furthermore, many Russian firms- competitive advantage could be directly related to their corruption connections. In this case, foreign investments would only accentuate corrupt companies- success by supporting them financially