An Integrated DEMATEL-QFD Model for Medical Supplier Selection

Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment criteria. A house of quality (HOQ) which translates purchased product features into supplier assessment criteria is built using the weights obtained by DEMATEL approach to determine the desired levels of supplier assessment criteria. Supplier alternatives are ranked by a distance-based method.

Hydraulic Studies on Core Components of PFBR

Detailed thermal hydraulic investigations are very  essential for safe and reliable functioning of liquid metal cooled fast  breeder reactors. These investigations are further more important for  components with complex profile, since there is no direct correlation  available in literature to evaluate the hydraulic characteristics of such  components directly. In those cases available correlations for similar  profile or geometries may lead to significant uncertainty in the  outcome. Hence experimental approach can be adopted to evaluate  these hydraulic characteristics more precisely for better prediction in  reactor core components.  Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool  type reactor is under advanced stage of construction at Kalpakkam,  India. Several components of this reactor core require hydraulic  investigation before its usage in the reactor. These hydraulic  investigations on full scale models, carried out by experimental  approaches using water as simulant fluid are discussed in the paper. 

Prevention of Corruption in Public Purchases

The results of dissertation research "Preventing and  combating corruption in public procurement" are presented in this  publication. The study was conducted 2011 till 2013 in a Member  State of the European Union– in the Republic of Latvia.  Goal of the thesis is to explore corruption prevention and  combating issues in public procurement sphere, to identify the  prevalence rates, determinants and contributing factors and  prevention opportunities in Latvia.  In the first chapter the author analyzes theoretical aspects of  understanding corruption in public procurement, with particular  emphasis on corruption definition problem, its nature, causes and  consequences. A separate section is dedicated to the public  procurement concept, mechanism and legal framework. In the first  part of this work the author presents cognitive methodology of  corruption in public procurement field, based on which the author has  carried out an analysis of corruption situation in public procurement  in Republic of Latvia.  In the second chapter of the thesis, the author analyzes the  problem of corruption in public procurement, including its historical  aspects, typology and classification of corruption subjects involved,  corruption risk elements in public procurement and their  identification. During the development of the second chapter author's  practical experience in public procurements was widely used.  The third and fourth chapter deals with issues related to the  prevention and combating corruption in public procurement, namely  the operation of the concept, principles, methods and techniques,  subjects in Republic of Latvia, as well as an analysis of foreign  experience in preventing and combating corruption. The fifth chapter  is devoted to the corruption prevention and combating perspectives  and their assessment. In this chapter the author has made the  evaluation of corruption prevention and combating measures  efficiency in Republic of Latvia, assessment of anti-corruption  legislation development stage in public procurement field in Latvia. 

Durability Properties of Foamed Concrete with Fiber Inclusion

An experimental study was conducted on foamed concrete with synthetic and natural fibres consisting of AR-glas, polypropylene, steel, kenaf and oil palm fibre. The foamed concrete mixtures produced had a target density of 1000kg/m3 and a mix ratio of (1:1.5:0.45). The fibres were used as additives. The inclusion of fibre was maintained at a volumetric fraction of 0.25 and 0.4%. The water absorption, thermal and shrinkage were determined to study the effect of the fibre on the durability properties of foamed concrete. The results showed that AR-glass fibre has the lowest percentage value of drying shrinkage compared to others.

On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, is Indispensable for Seed Germination under Moderate Salt Stress

Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin-repeat motif that has been implicated in diverse cellular processes such as signal transduction. The shg1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild-type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild-type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy.

Comparison of Prognostic Models in Different Scenarios of Shoreline Position on Ponta Negra Beach in Northeastern Brazil

Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach.

Nutritional Potential and Traditional Uses of High Altitude Wild Edible Plants in Eastern Himalayas, India

The food security issues and its relevance in High Mountain regions of the world have been often neglected. Wild edible plants have been playing a major role in livelihood security among the tribal Communities of East Himalayan Region of the world since time immemorial. The Eastern Himalayan Region of India is one of the mega diverse regions of world and rated as top 12th Global Biodiversity Hotspots by IUCN and recognized as one of the 200 significant eco-regions of the Globe. The region supports one of the world’s richest alpine floras and about one-third of them are endemic to the region. There are at least 7,500 flowering plants, 700 orchids, 58 bamboo species, 64 citrus species, 28 conifers, 500 mosses, 700 ferns and 728 lichens. The region is the home of more than three hundred different ethnic communities having diverse knowledge on traditional uses of flora and fauna as food, medicine and beverages. Monpa, Memba and Khamba are among the local communities residing in high altitude region of Eastern Himalaya with rich traditional knowledge related to utilization of wild edible plants. The Monpas, Memba and Khamba are the followers Mahayana sect of Himalayan Buddhism and they are mostly agrarian by primary occupation and also heavily relaying on wild edible plants for their livelihood security during famine since millennia. In the present study, we have reported traditional uses of 40 wild edible plant species and out of which 6 species were analyzed at biochemical level for nutrients contents and free radical scavenging activities. The results have shown significant free radical scavenging (antioxidant) activity and nutritional potential of the selected 6 wild edible plants used by the local communities of Eastern Himalayan Region of India.

Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.

Bifurcation Study and Parameter Analyses Boost Converter

This paper deals with bifurcation analyses in current programmed DC/DC Boost converter and exhibition of chaotic behavior. This phenomenon occurs due to variation of a set of the studied circuit parameters (input voltage and a reference current). Two different types of bifurcation paths have been observed as part as part of another bifurcation arising from variation of suitable chosen parameter.

Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS

An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed and simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs.

Innovative Pictogram Chinese Characters Representation

This paper proposes an innovative approach to represent the Pictogram Chinese Characters. The advantage of this representation is using an extraordinary representation to represent the pictogram Chinese character. This extraordinary representation is created accordingly to the original pictogram Chinese characters revolution or transition. The purpose of this innovative creation is to assist the learner to learn Chinese as second language (CSL) in Chinese language learning, specifically on memorizing Chinese characters. Commonly, the CSL will give up and frustrate easily while memorizing the Chinese characters by rote. So, our innovative representation helps on memorizing the Chinese character by visual storytelling. This innovative representation enhances the Chinese language learning experience of the CSL.

Monitoring of Water Pollution and Its Consequences: An Overview

Water a vital component for all living forms is derived from variety of sources, including surface water (rivers, lakes, reservoirs and ponds) and ground water (aquifers). Over the years of time, water bodies are subjected to human interference regularly resulting in deterioration of water quality. Therefore, pollution of water bodies has become matter of global concern. As the water quality closely relate to human health, water analysis before usage is of immense importance. Improper management of water bodies can cause serious problems in availability and quality of water. The quality of water may be described according to their physico-chemical and microbiological characteristics. For effective maintenance of water quality through appropriate control measures, continuous monitoring of metals, physico-chemical and biological parameter is essential for the establishment of baseline data for the water quality in any study area. The present study has focused on to explore the status of water pollution in various areas and to estimate the magnitude of its toxicity using different bioassay.

Turbine Compressor Vibration Analysis and Rotor Movement Evaluation by Shaft Center Line Method (The Case History Related to Main Turbine Compressor of an Olefin Plant in Iran Oil Industries)

Vibration monitoring methods of most critical equipment like main turbine and compressors always plays important role in preventive maintenance and management consideration in big industrial plants. There are a number of traditional methods like monitoring the overall vibration data from Bently Nevada panel and the time wave form (TWF) or fast Fourier transform (FFT) monitoring. Besides, Shaft centerline monitoring method developed too much in recent years. There are a number of arguments both in favor of and against this method between people who work in preventive maintenance and condition monitoring systems (vibration analysts). In this paper basic principal of Turbine compressor vibration analysis and rotor movement evaluation by shaft centerline method discussed in details through a case history. This case history is related to main turbine compressor of an olefin plant in Iran oil industry. In addition, some common mistakes that may occur by vibration analyst during the process discussed in details. It is worthy to know that, these mistakes may one of the reasons that sometimes this method seems to be not effective. Furthermore, recent patent and innovation in shaft position and movement evaluation are discussed in this paper.

A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates

Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.

In vitro and in vivo Anticholinesterase Activity of the Volatile Oil of the Aerial Parts of Ocimum basilicum L. and O. africanum Lour. Growing in Egypt

In this study, the in vitro anticholinesterase activity of the volatile oils of both O. basilicum and O. africanum was investigated and both samples showed significant activity. The major constituents of the two oils were isolated using several column chromatographies. Linalool, 1,8-cineol and eugenol were isolated from the volatile oil of O. basilicum and camphor was isolated from the volatile oil of O. africanum. The anticholinesterase activities of the isolated compounds were also evaluated where 1,8-cineol showed the highest inhibitory activity followed by camphor. To confirm these activities, learning and memory enhancing effects were tested in mice. Memory impairment was induced by scopolamine, a cholinergic muscarinic receptor antagonist. Anti-amnesic effects of both volatile oils and their terpenoids were investigated by the passive avoidance task in mice. We also examined their effects on brain acetylcholinesterase activity. Results showed that scopolamineinduced cognitive dysfunction was significantly attenuated by administration of the volatile oils and their terpenoids, eugenol and camphor, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that O. basilicum and O. africanum volatile oils can be good candidates for further studies on Alzheimer’s disease via their acetylcholinesterase inhibitory actions.

Behavioral Studies on Multi-Directionally Reinforced 4-D Orthogonal Composites on Various Preform Configurations

The main advantage of multidirectionally reinforced composites is the freedom to orient selected fiber types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However, a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D performs fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.

Voltage Stability Enhancement Using Cat Swarm Optimization Algorithm

Optimal Power Flow (OPF) problem in electrical power system is considered as a static, non-linear, multi-objective or a single objective optimization problem. This paper presents an algorithm for solving the voltage stability objective reactive power dispatch problem in a power system .The proposed approach employs cat swarm optimization algorithm for optimal settings of RPD control variables. Generator terminal voltages, reactive power generation of the capacitor banks and tap changing transformer setting are taken as the optimization variables. CSO algorithm is tested on standard IEEE 30 bus system and the results are compared with other methods to prove the effectiveness of the new algorithm. As a result, the proposed method is the best for solving optimal reactive power dispatch problem.

Evaluation of Nutritional Potential of Five Unexplored Wild Edible Food Plants from Eastern Himalayan Biodiversity Hotspot Region (India)

Wild edible food plants contain a number of organic phytochemical that have been linked to the promotion of good health. These plants used by the local people of Arunachal Pradesh (Northeast India) are found to have high nutritional potential to maintain general balance diet. A study was conducted to evaluate the nutritional potential of five commonly found, unexplored wild food plants namely, Piper pedicellatum C. DC (leaves), Gonostegia hirta (Blume ex Hassk.) Miq. (leaves), Mussaenda roxburghii Hook.f (leaves), Solanum spirale Roxb. (leaves and fruits) and Cyathea spinulosa Wall. ex Hook. (pith portion and tender rachis) from East Siang District of Arunachal Pradesh Northeast (India) for ascertaining their suitability for utilization as supplementary food. Results of study revealed that P. pedicellatum, C. spinulosa, and S. spirale (leaves) are the most promising species which have high nutritional content out of the five wild food plants investigated which is required for the normal growth and development of human.

Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.