Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Effect of Different Salts on Pseudomonas taetrolens’ Ability to Lactobionic Acid Production

Lactobionic acid is a disaccharide formed from gluconic acid and galactose, and produced by oxidation of lactose. Productivity of lactobionic acid by microbial synthesis can be affected by various factors, and one of them is a presence of potassium, magnesium and manganese ions. In order to extend lactobionic acid production efficiency, it is necessary to increase the yield of lactobionic acid by optimising the fermentation conditions and available substrates for Pseudomonas taetrolens growth. The object of the research was to determinate the application of K2HPO4, MnSO4, MgSO4 × 7H2O salts in different concentration for effective lactose oxidation to lactobionic acid by Pseudomonas taetrolens. Pseudomonas taetrolens NCIB 9396 (NCTC, England) and Pseudomonas taetrolens DSM 21104 (DSMZ, Germany) were used for the study. The acid whey was used as the study object. The content of lactose in whey samples was determined using MilcoScanTM Mars (Foss, Denmark) and high performance liquid chromatography (Shimadzu LC 20 Prominence, Japan). The content of lactobionic acid in whey samples was determined using the high performance liquid chromatography. The impact of studied salts differs, Mn2+ and Mg2+ ions enhanced fermentation instead of K+ ions. Results approved that Mn2+ and Mg2+ ions are necessary for Pseudomonas taetrolens growth. The study results will help to improve the effectiveness of lactobionic acid production with Pseudomonas taetrolens NCIB 9396 and DSM 21104.

Study of Polyphenol Profile and Antioxidant Capacity in Italian Ancient Apple Varieties by Liquid Chromatography

Safeguarding, studying and enhancing biodiversity play an important and indispensable role in re-launching agriculture. The ancient local varieties are therefore a precious resource for genetic and health improvement. In order to protect biodiversity through the recovery and valorization of autochthonous varieties, in this study we analyzed 12 samples of four ancient apple cultivars representative of Friuli Venezia Giulia, selected by local farmers who work on a project for the recovery of ancient apple cultivars. The aim of this study is to evaluate the polyphenolic profile and the antioxidant capacity that characterize the organoleptic and functional qualities of this fruit species, besides having beneficial properties for health. In particular, for each variety, the following compounds were analyzed, both in the skins and in the pulp: gallic acid, catechin, chlorogenic acid, epicatechin, caffeic acid, coumaric acid, ferulic acid, rutin, phlorizin, phloretin and quercetin to highlight any differences in the edible parts of the apple. The analysis of individual phenolic compounds was performed by High Performance Liquid Chromatography (HPLC) coupled with a diode array UV detector (DAD), the antioxidant capacity was estimated using an in vitro essay based on a Free Radical Scavenging Method and the total phenolic compounds was determined using the Folin-Ciocalteau method. From the results, it is evident that the catechins are the most present polyphenols, reaching a value of 140-200 μg/g in the pulp and of 400-500 μg/g in the skin, with the prevalence of epicatechin. Catechins and phlorizin, a dihydrohalcone typical of apples, are always contained in larger quantities in the peel. Total phenolic compounds content was positively correlated with antioxidant activity in apple pulp (r2 = 0,850) and peel (r2 = 0,820). Comparing the results, differences between the varieties analyzed and between the edible parts (pulp and peel) of the apple were highlighted. In particular, apple peel is richer in polyphenolic compounds than pulp and flavonols are exclusively present in the peel. In conclusion, polyphenols, being antioxidant substances, have confirmed the benefits of fruit in the diet, especially as a prevention and treatment for degenerative diseases. They demonstrated to be also a good marker for the characterization of different apple cultivars. The importance of protecting biodiversity in agriculture was also highlighted through the exploitation of native products and ancient varieties of apples now forgotten.

Analyzing Irbid’s Food Waste as Feedstock for Anaerobic Digestion

Food waste samples from Irbid were collected from 5 different sources for 12 weeks to characterize their composition in terms of four food categories; rice, meat, fruits and vegetables, and bread. Average food type compositions were 39% rice, 6% meat, 34% fruits and vegetables, and 23% bread. Methane yield was also measured for all food types and was found to be 362, 499, 352, and 375 mL/g VS for rice, meat, fruits and vegetables, and bread, respectively. A representative food waste sample was created to test the actual methane yield and compare it to calculated one. Actual methane yield (414 mL/g VS) was greater than the calculated value (377 mL/g VS) based on food type proportions and their specific methane yield. This study emphasizes the effect of the types of food and their proportions in food waste on the final biogas production. Findings in this study provide representative methane emission factors for Irbid’s food waste, which represent as high as 68% of total Municipal Solid Waste (MSW) in Irbid, and also indicate the energy and economic value within the solid waste stream in Irbid.

Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Exploring Employee Experiences of Distributed Leadership in Consultancy SMEs

Despite a growth in literature on distributed leadership, the majority of studies are centred on large public organisations particularly within the health and education sectors. The purpose of this study is to fill the gap in the literature by exploring employee experiences of distributed leadership within two commercial consultancy SME businesses in the UK and USA. The aim of the study informed an exploratory method of research to gather qualitative data drawn from semi-structured interviews involving a sample of employees in each organisation. A series of broad, open questions were used to explore the employees’ experiences; evidence of distributed leadership; and extant barriers and practices in each organisation. Whilst some of our findings aligned with patterns and practices in the existing literature, it importantly discovered some emergent themes that have not previously been recognised in the previous studies. Our investigation identified that whilst distributed leadership was in evidence in both organisations, the interviewees’ experience reported that it was sporadic and inconsistent. Moreover, non-client focused projects were reported to be less important and distributed leadership was found to be inconsistent or non-existent.

Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance

The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.

The Mouth and Gastrointestinal Tract of the African Lung Fish Protopterus annectens in River Niger at Agenebode, Nigeria

The West African Lung fishes are fishes rich in protein and serve as an important source of food supply for man. The kind of food ingested by this group of fishes is dependent on the alimentary canal as well as the fish’s digestive processes which provide suitable modifications for maximum utilization of food taken. A study of the alimentary canal of P. annectens will expose the best information on the anatomy and histology of the fish. Samples of P. annectens were dissected to reveal the liver, pancreas and entire gut wall. Digital pictures of the mouth, jaws and the Gastrointestinal Tract (GIT) were taken. The entire gut was identified, sectioned and micro graphed. P. annectens was observed to possess a terminal mouth that opens up to 10% of its total body length, an adaptive feature to enable the fish to swallow the whole of its pry. Its dentition is made up of incisors- scissor-like teeth which also help to firmly grip, seize and tear through the skin of prey before swallowing. A short, straight and longitudinal GIT was observed in P. annectens which is known to be common feature in lungfishes, though it is thought to be a primitive characteristic similar to the lamprey. The oesophagus is short and distensible similar to other predatory and carnivorous species. Food is temporarily stored in the stomach before it is passed down into the intestine. A pyloric aperture is seen at the end of the double folded pyloric valve which leads into an intestine that makes up 75% of the whole GIT. The intestine begins at the posterior end of the pyloric aperture and winds down in six coils through the whole length intestine and ends at the cloaca. From this study it is concluded that P. annectens possess a composite GIT with organs similar to other lung fishes; it is a detritor with carnivorous abilities.

Assessment of Analytical Equations for the Derivation of Young’s Modulus of Bonded Rubber Materials

The prediction of the vibration response of rubber products by analytical or numerical method depends mainly on the predefined intrinsic material properties such as Young’s modulus, damping factor and Poisson’s ratio. Such intrinsic properties are determined experimentally by subjecting a bonded rubber sample to compression tests. The compression tests on such a sample yield an apparent Young’s modulus which is greater in magnitude than the intrinsic Young’s modulus of the rubber. As a result, many analytical equations have been developed to determine Young’s modulus from an apparent Young’s modulus of bonded rubber materials. In this work, the applicability of some of these analytical equations is assessed via experimental testing. The assessment is based on testing of vulcanized nitrile butadiene rubber (NBR70) samples using tensile test and compression test methods. The analytical equations are used to determine the intrinsic Young’s modulus from the apparent modulus that is derived from the compression test data of the bonded rubber samples. Then, these Young’s moduli are compared with the actual Young’s modulus that is derived from the tensile test data. The results show significant discrepancy between the Young’s modulus derived using the analytical equations and the actual Young’s modulus.

Impact of Foliar Application of Zinc on Micro and Macro Elements Distribution in Phyllanthus amarus

The present study was carried out to investigate the interaction of foliar applied zinc with other elements in Phyllanthus amarus plants. The plant samples for our experiment were collected from Lam Dong province, Vietnam. Seven suspension solutions of nanosized zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with different Zn concentration were used. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe, Mn) and macro (Ca, Mg, P and K) nutrients in plant roots, and stems and leaves were determined. It was concluded that the zinc content of plant roots varies narrowly, with no significant impact of ZnHN fertilization. The same trend can be seen in the content of Cu, Mn, and macronutrients. The zinc content of plant stems and leaves varies within wide limits, with the significant impact of ZnHN fertilization. The trends in the content of Cu, Mn, and macronutrients are kept the same as in the root, whereas the iron trends to increase its content at increasing the zinc content.

Physicochemical and Microbiological Properties of Kefir, Kefir Yogurt and Chickpea Yogurt

The consumption of functional foods is very common. For this reason, many products which are probiotic, prebiotic, energy reduced and fat reduced are developed. In this research, physicochemical and microbiological properties of functional kefir, kefir yogurt and chickpea yogurt were examined. For this purpose, pH values, titration acidities, viscosity values, water holding capacities, serum separation values, acetaldehyde contents, tyrosine contents, the count of aerobic mesophilic bacteria, lactic acid bacteria count and mold-yeast counts were determined. As a result of performed analysis, the differences between titration acidities, serum separation values, water holding capacities, acetaldehyde and tyrosine contents of samples were statistically significant (p < 0.05). There were no significant differences on pH values, viscosities, and microbiological properties of samples (p > 0.05). Consequently industrial production of functional kefir yogurt and chickpea yogurt may be advised.

Corporate Governance Mechanisms, Whistle-Blowing Policy and Earnings Management Practices of Firms in Malaysia

This study examines whether corporate governance (CG) mechanisms in firms that have a whistle-blowing policy (WHBLP) are more effective in constraining earnings management (EM), than those without. A sample of 288 Malaysian firms for the years 2013 to 2015, amounting to 864 firm-years were grouped into firms with and without WHBLP. Results show that for firms without WHBLP, the board chairman tenure would minimize EM activities. Meanwhile, for firms with WHBLP, board chairman independence, board chairman tenure, audit committee size, audit committee meeting and women in the audit committees are found to be associated with less EM activities. Further, it is found that ownership concentration and Big 4 auditing firms help to reduce EM activities in firms with WHBLP, while not in firms without WHBLP. Hence, functional and effective governance can be achieved by having a WHBLP, which is in line with agency and resource dependent theories. Therefore, this study suggests that firms should have a WHBLP in place, and policymakers should come up with enhanced criteria to strengthen the mechanisms of WHBLP.

Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

A Qualitative Evidence of the Markedness of Code Switching during Commercial Bank Service Encounters in Ìbàdàn Metropolis

In a multilingual setting like Nigeria, the success of service encounters is enhanced by the use of a language that ensures the linguistic and persuasive demands of the interlocutors. This study examined motivations for code switching as a negotiation strategy in bank-hall desk service encounters in Ìbàdàn metropolis using Myers-Scotton’s exploration on markedness in language use. The data consisted of transcribed audio recording of bank-hall service encounters, and direct observation of bank interactions in two purposively sampled commercial banks in Ìbàdàn metropolis. The data was subjected to descriptive linguistic analysis using Myers Scotton’s Markedness Model.  Findings reveal that code switching is frequently employed during different stages of service encounter: greeting, transaction and closing to fulfil relational, bargaining and referential functions. Bank staff and customers code switch to make unmarked, marked and explanatory choices. A strategy used to identify with customer’s cultural affiliation, close status gap, and appeal to begrudged customer; or as an explanatory choice with non-literate customers for ease of communication. Bankers select English to maintain customers’ perceptions of prestige which is retained or diverged from depending on their linguistic preference or ability.  Yoruba is seen as an efficient negotiation strategy with both bankers and their customers, making choices within conversation to achieve desired conversational and functional aims.

Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments

Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.

A Study on Architectural Characteristics‎ of Traditional Iranian Ordinary Houses in Mashhad, Iran

In many Iranian cities including ‎‎Mashhad‎, the capital of ‎‎‎‎Razavi Khorasan Province‏‎, ‎ordinary samples of domestic architecture ‎on a ‎‏small scale is not ‎‎‎considered as ‎heritage. ‎While the ‎principals of house formation are ‎‎respected in all ‎‎traditional Iranian ‎‎‎‎houses‎; ‎from moderate to great ones. During the past decade, Mashhad has lost its identity, and has become a modern city. Identifying it as the capital of the Islamic Culture in 2017 by ISESCO and consequently looking for new developments and transfiguration caused to demolish a large ‎number ‎of ‎traditional modest habitation. ‎For this ‎reason, the present paper aims to introduce ‎the three ‎undiscovered houses with the ‎historical and monumental values located in the ‎oldest ‎neighborhoods of Mashhad which have been neglected in the cultural ‎heritage field. The preliminary phase of this approach will be a measured survey to identify the significant characteristics ‎of ‎selected dwellings and understand the challenges through focusing on building ‎form, orientation, ‎‎room function, space proportion and ornamental elements’ details. A comparison between the ‎‎case studies and the wealthy domestically buildings ‎presents that a house belongs to inhabitants ‎with an average income could introduce the same accurate, regular, harmonic and proportionate ‎design which can be found in the great mansions. It reveals that an ordinary traditional house can ‎be regarded as valuable construction not only for its historical characteristics but also ‎for its ‎aesthetical and architectural features that could avoid further destructions in the future.

Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

The Effect of Substitution of CaO/MgO and CaO/SrO on in vitro Bioactivity of Sol-Gel Derived Bioactive Glass

This study had two main aims: firstly, to determine how the individual substitution of CaO/MgO and CaO/SrO can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG) and secondly to introduce a composition in the 60SiO2–(36-x)CaO–4P2O5–(x)MgO and 60SiO2–(36-x)CaO–4P2O5–(x)SrO quaternary systems (where x= 0, 5, 10 mol.%) with enhanced biocompatibility, alkaline phosphatase (ALP) activity, and more efficient antibacterial activity against MRSA bacteria. Results showed that both magnesium-substituted bioactive glasses (M-BGs) and strontium- substituted bioactive glasses (S-BGs) retarded the Hydroxyapatite (HA) formation. Meanwhile, magnesium had more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ALP assays revealed that the presence of moderate amount (5 mol%) of Mg and Sr had a stimulating effect on increasing of both proliferation and differentiation of MC3T3-E1 cells. Live dead and Dapi/actin staining revealed both substitution of CaO/MgO and CaO/SrO resulted in more biocompatibility and stimulation potential of the MC3T3 cells compared with control. Taken together, among all of the synthesized magnesium substituted (MBGs) and strontium substituted (SBGs), the sample 58- BG with 5 mol% CaO/MgO substitution (BG-5M) was considered as a multifunctional biomaterial in bone tissue regeneration field with enhanced biocompatibility, ALP activity as well as the highest antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria.

A 1H NMR-Linked PCR Modelling Strategy for Tracking the Fatty Acid Sources of Aldehydic Lipid Oxidation Products in Culinary Oils Exposed to Simulated Shallow-Frying Episodes

Objectives/Hypotheses: The adverse health effect potential of dietary lipid oxidation products (LOPs) has evoked much clinical interest. Therefore, we employed a 1H NMR-linked Principal Component Regression (PCR) chemometrics modelling strategy to explore relationships between data matrices comprising (1) aldehydic LOP concentrations generated in culinary oils/fats when exposed to laboratory-simulated shallow frying practices, and (2) the prior saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) contents of such frying media (FM), together with their heating time-points at a standard frying temperature (180 oC). Methods: Corn, sunflower, extra virgin olive, rapeseed, linseed, canola, coconut and MUFA-rich algae frying oils, together with butter and lard, were heated according to laboratory-simulated shallow-frying episodes at 180 oC, and FM samples were collected at time-points of 0, 5, 10, 20, 30, 60, and 90 min. (n = 6 replicates per sample). Aldehydes were determined by 1H NMR analysis (Bruker AV 400 MHz spectrometer). The first (dependent output variable) PCR data matrix comprised aldehyde concentration scores vectors (PC1* and PC2*), whilst the second (predictor) one incorporated those from the fatty acid content/heating time variables (PC1-PC4) and their first-order interactions. Results: Structurally complex trans,trans- and cis,trans-alka-2,4-dienals, 4,5-epxy-trans-2-alkenals and 4-hydroxy-/4-hydroperoxy-trans-2-alkenals (group I aldehydes predominantly arising from PUFA peroxidation) strongly and positively loaded on PC1*, whereas n-alkanals and trans-2-alkenals (group II aldehydes derived from both MUFA and PUFA hydroperoxides) strongly and positively loaded on PC2*. PCR analysis of these scores vectors (SVs) demonstrated that PCs 1 (positively-loaded linoleoylglycerols and [linoleoylglycerol]:[SFA] content ratio), 2 (positively-loaded oleoylglycerols and negatively-loaded SFAs), 3 (positively-loaded linolenoylglycerols and [PUFA]:[SFA] content ratios), and 4 (exclusively orthogonal sampling time-points) all powerfully contributed to aldehydic PC1* SVs (p 10-3 to < 10-9), as did all PC1-3 x PC4 interaction ones (p 10-5 to < 10-9). PC2* was also markedly dependent on all the above PC SVs (PC2 > PC1 and PC3), and the interactions of PC1 and PC2 with PC4 (p < 10-9 in each case), but not the PC3 x PC4 contribution. Conclusions: NMR-linked PCR analysis is a valuable strategy for (1) modelling the generation of aldehydic LOPs in heated cooking oils and other FM, and (2) tracking their unsaturated fatty acid (UFA) triacylglycerol sources therein.

A Development of Creative Instruction Model through Digital Media

This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.