Sustainable Water Utilization in Arid Region of Iran by Qanats

To make use of the limited amounts of water in arid region, the Iranians developed man-made underground water channels called qanats (kanats) .In fact, qanats may be considered as the first long-distance water transfer system. Qanats are an ancient water transfer system found in arid regions wherein groundwater from mountainous areas, aquifers and sometimes from rivers, was brought to points of re-emergence such as an oasis, through one or more underground tunnels. The tunnels, many of which were kilometers in length, had designed for slopes to provide gravitational flow. The tunnels allowed water to drain out to the surface by gravity to supply water to lower and flatter agricultural land. Qanats have been an ancient, sustainable system facilitating the harvesting of water for centuries in Iran, and more than 35 additional countries of the world such as India, Arabia, Egypt, North Africa, Spain and even to New world. There are about 22000 qanats in Iran with 274000 kilometers of underground conduits all built by manual labor. The amount of water of the usable qanats of Iran produce is altogether 750 to 1000 cubic meter per second. The longest chain of qanat is situated in Gonabad region in Khorasan province. It is 70 kilometers long. Qanats are renewable water supply systems that have sustained agricultural settlement on the Iranian plateau for millennia. The great advantages of Qanats are no evaporation during transit, little seepage , no raising of the water- table and no pollution in the area surrounding the conduits. Qanat systems have a profound influence on the lives of the water users in Iran, and conform to Iran-s climate. Qanat allows those living in a desert environment adjacent to a mountain watershed to create a large oasis in an otherwise stark environment. This paper explains qanats structure designs, their history, objectives causing their creation, construction materials, locations and their importance in different times, as well as their present sustainable role in Iran.

Study of Atmospheric System and its Effect on Flood in Isfahan

Heavy rains are one of the features of arid and semi arid climates which result in flood. This kind of rainfall originates from environmental and synoptic conditions. Mediterranean cyclones are the major factor in heavy rainfall in Iran, but these cyclones do not happen in some parts of Iran such as Southern and Southeastern areas. In this study, it has been tried to pinpoint the synoptic reasons of heavy rainfall in Isfahan through the analysis of the relationship between this rainfall in Isfahan and atmospheric system over Iran and the areas around it. The findings of this study show that the major factor have is the arrival of Sudanese low pressure system in this region from the southwest, of course if the ascent local conditions such as heat occur, the heaviest rains happen in Isfahan. In fact this kind of rainfall in Isfahan has a Sudanese origin and if it is accompanied by Mediterranean system, heavier rain falls.

An Energy Reverse AODV Routing Protocol in Ad Hoc Mobile Networks

In this paper we present a full performance analysis of an energy conserving routing protocol in mobile ad hoc network, named ER-AODV (Energy Reverse Ad-hoc On-demand Distance Vector routing). ER-AODV is a reactive routing protocol based on a policy which combines two mechanisms used in the basic AODV protocol. AODV and most of the on demand ad hoc routing protocols use single route reply along reverse path. Rapid change of topology causes that the route reply could not arrive to the source node, i.e. after a source node sends several route request messages, the node obtains a reply message, and this increases in power consumption. To avoid these problems, we propose a mechanism which tries multiple route replies. The second mechanism proposes a new adaptive approach which seeks to incorporate the metric "residual energy " in the process route selection, Indeed the residual energy of mobile nodes were considered when making routing decisions. The results of simulation show that protocol ER-AODV answers a better energy conservation.

New Newton's Method with Third-order Convergence for Solving Nonlinear Equations

For the last years, the variants of the Newton-s method with cubic convergence have become popular iterative methods to find approximate solutions to the roots of non-linear equations. These methods both enjoy cubic convergence at simple roots and do not require the evaluation of second order derivatives. In this paper, we present a new Newton-s method based on contra harmonic mean with cubically convergent. Numerical examples show that the new method can compete with the classical Newton's method.

Sustainable Development in Construction

Semnan is a city in semnan province, northern Iran with a population estimated at 119,778 inhabitants. It is the provincial capital of semnan province. Iran is a developing country and construction is a basic factor of developing too. Hence, Semnan city needs to a special programming for construction of buildings, structures and infrastructures. Semnan municipality tries to begin this program. In addition to, city has some historical monuments which can be interesting for tourists. Hence, Semnan inhabitants can benefit from tourist industry. Optimization of Energy in construction industry is another activity of this municipality and the inhabitants who execute these regulations receive some discounts. Many parts of Iran such as semnan are located in highly seismic zones and structures must be constructed safe e.g., according to recent seismic codes. In this paper opportunities of IT in construction industry of Iran are investigated in three categories. Pre-construction phase, construction phase and earthquake disaster mitigation are studied. Studies show that information technology can be used in these items for reducing the losses and increasing the benefits. Both government and private sectors must contribute to this strategic project for obtaining the best result.

Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique

In the present work, Pulsed Electro Acoustic (PEA) technique was adopted to understand the space charge dynamics in elastomeric material. It is observed that the polarity of the applied DC voltage voltage and its magnitude alters the space charge dynamics in insulation structure. It is also noticed that any addition of compound to the base material/processing technique have characteristic variation in the space charge injection process. It could be concluded based on the present work that the plasticizer could inject heterocharges into the insulation medium. Also it is realized that space charge magnitude is less with the addition of plasticizer. In the PEA studies, it is observed that local electric field in the insulating material can be much more than applied electric field due to space charge formation. One of the important conclusions arrived at based on PEA technique is that one could understand the safe operating electric field of an insulation material and the charge trap sites.

Performance Analysis of a Discrete-time GeoX/G/1 Queue with Single Working Vacation

This paper treats a discrete-time batch arrival queue with single working vacation. The main purpose of this paper is to present a performance analysis of this system by using the supplementary variable technique. For this purpose, we first analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. Next, we present the stationary distributions of the system length as well as some performance measures at random epochs by using the supplementary variable method. Thirdly, still based on the supplementary variable method we give the probability generating function (PGF) of the number of customers at the beginning of a busy period and give a stochastic decomposition formulae for the PGF of the stationary system length at the departure epochs. Additionally, we investigate the relation between our discretetime system and its continuous counterpart. Finally, some numerical examples show the influence of the parameters on some crucial performance characteristics of the system.

Simulation of Agri-Food Supply Chains

Supply chain management has become more challenging with the emerging trend of globalization and sustainability. Lately, research related to perishable products supply chains, in particular agricultural food products, has emerged. This is attributed to the additional complexity of managing this type of supply chains with the recently increased concern of public health, food quality, food safety, demand and price variability, and the limited lifetime of these products. Inventory management for agrifood supply chains is of vital importance due to the product perishability and customers- strive for quality. This paper concentrates on developing a simulation model of a real life case study of a two echelon production-distribution system for agri-food products. The objective is to improve a set of performance measures by developing a simulation model that helps in evaluating and analysing the performance of these supply chains. Simulation results showed that it can help in improving overall system performance.

A Secure Blind Signature Scheme for Computation Limited Users

This manuscript presents a fast blind signature scheme with extremely low computation for users. Only several modular additions and multiplications are required for a user to obtain and verify a signature in the proposed scheme. Comparing with the existing ones in the literature, the scheme greatly reduces the computations for users.

Hardware Implementations for the ISO/IEC 18033-4:2005 Standard for Stream Ciphers

In this paper the FPGA implementations for four stream ciphers are presented. The two stream ciphers, MUGI and SNOW 2.0 are recently adopted by the International Organization for Standardization ISO/IEC 18033-4:2005 standard. The other two stream ciphers, MICKEY 128 and TRIVIUM have been submitted and are under consideration for the eSTREAM, the ECRYPT (European Network of Excellence for Cryptology) Stream Cipher project. All ciphers were coded using VHDL language. For the hardware implementation, an FPGA device was used. The proposed implementations achieve throughputs range from 166 Mbps for MICKEY 128 to 6080 Mbps for MUGI.

The Study of the Discrete Risk Model with Random Income

In this paper, we extend the compound binomial model to the case where the premium income process, based on a binomial process, is no longer a linear function. First, a mathematically recursive formula is derived for non ruin probability, and then, we examine the expected discounted penalty function, satisfy a defect renewal equation. Third, the asymptotic estimate for the expected discounted penalty function is then given. Finally, we give two examples of ruin quantities to illustrate applications of the recursive formula and the asymptotic estimate for penalty function.

Production of Apricot Vinegar Using an Isolated Acetobacter Strain from Iranian Apricot

Vinegar or sour wine is a product of alcoholic and subsequent acetous fermentation of sugary precursors derived from several fruits or starchy substrates. This delicious food additive and supplement contains not less than 4 grams of acetic acid in 100 cubic centimeters at 20°C. Among the large number of bacteria that are able to produce acetic acid, only few genera are used in vinegar industry most significant of which are Acetobacter and Gluconobacter. In this research we isolated and identified an Acetobacter strain from Iranian apricot, a very delicious and sensitive summer fruit to decay, we gathered from fruit's stores in Isfahan, Iran. The main culture media we used were Carr, GYC, Frateur and an industrial medium for vinegar production. We isolated this strain using a novel miniature fermentor we made at Pars Yeema Biotechnologists Co., Isfahan Science and Technology Town (ISTT), Isfahan, Iran. The microscopic examinations of isolated strain from Iranian apricot showed gram negative rods to cocobacilli. Their catalase reaction was positive and oxidase reaction was negative and could ferment ethanol to acetic acid. Also it showed an acceptable growth in 5%, 7% and 9% ethanol concentrations at 30°C using modified Carr media after 24, 48 and 96 hours incubation respectively. According to its tolerance against high concentrations of ethanol after four days incubation and its high acetic acid production, 8.53%, after 144 hours, this strain could be considered as a suitable industrial strain for a production of a new type of vinegar, apricot vinegar, with a new and delicious taste. In conclusion this is the first report of isolation and identification of an Acetobacter strain from Iranian apricot with a very good tolerance against high ethanol concentrations as well as high acetic acid productivity in an acceptable incubation period of time industrially. This strain could be used in vinegar industry to convert apricot spoilage to a beneficiary product and mentioned characteristics have made it as an amenable strain in food and agricultural biotechnology.

Effective Personal Knowledge Management: A Proposed Online Framework

This paper presents an analytical framework for an effective online personal knowledge management (PKM) of knowledge workers. The development of this framework is prompted by our qualitative research on the PKM processes and cognitive enablers of knowledge workers in eight organisations selected from three main industries in Malaysia. This multiple-case research identifies the relationships between the effectiveness of four online PKM processes: get/retrieve, understand/analyse, share, and connect. It also establishes the importance of cognitive enablers that mediate this relationship, namely, method, identify, decide and drive. Qualitative analysis is presented as the findings, supported by the preceded quantitative analysis on an exploratory questionnaire survey.

Novel Adaptive Channel Equalization Algorithms by Statistical Sampling

In this paper, novel statistical sampling based equalization techniques and CNN based detection are proposed to increase the spectral efficiency of multiuser communication systems over fading channels. Multiuser communication combined with selective fading can result in interferences which severely deteriorate the quality of service in wireless data transmission (e.g. CDMA in mobile communication). The paper introduces new equalization methods to combat interferences by minimizing the Bit Error Rate (BER) as a function of the equalizer coefficients. This provides higher performance than the traditional Minimum Mean Square Error equalization. Since the calculation of BER as a function of the equalizer coefficients is of exponential complexity, statistical sampling methods are proposed to approximate the gradient which yields fast equalization and superior performance to the traditional algorithms. Efficient estimation of the gradient is achieved by using stratified sampling and the Li-Silvester bounds. A simple mechanism is derived to identify the dominant samples in real-time, for the sake of efficient estimation. The equalizer weights are adapted recursively by minimizing the estimated BER. The near-optimal performance of the new algorithms is also demonstrated by extensive simulations. The paper has also developed a (Cellular Neural Network) CNN based approach to detection. In this case fast quadratic optimization has been carried out by t, whereas the task of equalizer is to ensure the required template structure (sparseness) for the CNN. The performance of the method has also been analyzed by simulations.

Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing industrial wastewater with a high content of heavy metals. Tris-buffered mineral salt medium was used for growing Alcaligenes eutrophus AE104 (pEBZ141). The cells were cultivated for 18 h at 30 oC in Tris-buffered mineral salt medium containing 3 mM disodium sulphate and 46 mM sodium gluconate as the carbon source. The cells were harvested by centrifugation, washed, and suspended in 10 mM Tris HCl, pH 7.0, containing 46 mM sodium gluconate, and 5 mM Chromium. Interaction among induction of chr resistance determinant, and chromate reduction have been demonstrated. Results of this study show that the above bacteria can be very useful for bioremediation of chromium from industrial wastewater.

Nonlinear Evolution of Electron Density Under High-Energy-Density Conditions

Evolution of one-dimensional electron system under high-energy-density (HED) conditions is investigated, using the principle of least-action and variational method. In a single-mode modulation model, the amplitude and spatial wavelength of the modulation are chosen to be general coordinates. Equations of motion are derived by considering energy conservation and force balance. Numerical results show that under HED conditions, electron density modulation could exist. Time dependences of amplitude and wavelength are both positively related to the rate of energy input. Besides, initial loading speed has a significant effect on modulation amplitude, while wavelength relies more on loading duration.

Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

Automatic Light Control in Domotics using Artificial Neural Networks

Home Automation is a field that, among other subjects, is concerned with the comfort, security and energy requirements of private homes. The configuration of automatic functions in this type of houses is not always simple to its inhabitants requiring the initial setup and regular adjustments. In this work, the ubiquitous computing system vision is used, where the users- action patterns are captured, recorded and used to create the contextawareness that allows the self-configuration of the home automation system. The system will try to free the users from setup adjustments as the home tries to adapt to its inhabitants- real habits. In this paper it is described a completely automated process to determine the light state and act on them, taking in account the users- daily habits. Artificial Neural Network (ANN) is used as a pattern recognition method, classifying for each moment the light state. The work presented uses data from a real house where a family is actually living.

Privacy in New Mobile Payment Protocol

The increasing development of wireless networks and the widespread popularity of handheld devices such as Personal Digital Assistants (PDAs), mobile phones and wireless tablets represents an incredible opportunity to enable mobile devices as a universal payment method, involving daily financial transactions. Unfortunately, some issues hampering the widespread acceptance of mobile payment such as accountability properties, privacy protection, limitation of wireless network and mobile device. Recently, many public-key cryptography based mobile payment protocol have been proposed. However, limited capabilities of mobile devices and wireless networks make these protocols are unsuitable for mobile network. Moreover, these protocols were designed to preserve traditional flow of payment data, which is vulnerable to attack and increase the user-s risk. In this paper, we propose a private mobile payment protocol which based on client centric model and by employing symmetric key operations. The proposed mobile payment protocol not only minimizes the computational operations and communication passes between the engaging parties, but also achieves a completely privacy protection for the payer. The future work will concentrate on improving the verification solution to support mobile user authentication and authorization for mobile payment transactions.

A Post Keynesian Environmental Macroeconomic Model for Agricultural Water Sustainability under Climate Change in the Murray-Darling Basin, Australia

Climate change has profound consequences for the agriculture of south-eastern Australia and its climate-induced water shortage in the Murray-Darling Basin. Post Keynesian Economics (PKE) macro-dynamics, along with Kaleckian investment and growth theory, are used to develop an ecological-economic system dynamics model of this complex nonlinear river basin system. The Murray- Darling Basin Simulation Model (MDB-SM) uses the principles of PKE to incorporate the fundamental uncertainty of economic behaviors of farmers regarding the investments they make and the climate change they face, particularly as regards water ecosystem services. MDB-SM provides a framework for macroeconomic policies, especially for long-term fiscal policy and for policy directed at the sustainability of agricultural water, as measured by socio-economic well-being considerations, which include sustainable consumption and investment in the river basin. The model can also reproduce other ecological and economic aspects and, for certain parameters and initial values, exhibit endogenous business cycles and ecological sustainability with realistic characteristics. Most importantly, MDBSM provides a platform for the analysis of alternative economic policy scenarios. These results reveal the importance of understanding water ecosystem adaptation under climate change by integrating a PKE macroeconomic analytical framework with the system dynamics modelling approach. Once parameterised and supplied with historical initial values, MDB-SM should prove to be a practical tool to provide alternative long-term policy simulations of agricultural water and socio-economic well-being.