Practical Aspects of Face Recognition

Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.

A Reduced-Bit Multiplication Algorithm for Digital Arithmetic

A reduced-bit multiplication algorithm based on the ancient Vedic multiplication formulae is proposed in this paper. Both the Vedic multiplication formulae, Urdhva tiryakbhyam and Nikhilam, are first discussed in detail. Urdhva tiryakbhyam, being a general multiplication formula, is equally applicable to all cases of multiplication. It is applied to the digital arithmetic and is shown to yield a multiplier architecture which is very similar to the popular array multiplier. Due to its structure, it leads to a high carry propagation delay in case of multiplication of large numbers. Nikhilam Sutra, on the other hand, is more efficient in the multiplication of large numbers as it reduces the multiplication of two large numbers to that of two smaller numbers. The framework of the proposed algorithm is taken from this Sutra and is further optimized by use of some general arithmetic operations such as expansion and bit-shifting to take advantage of bit-reduction in multiplication. We illustrate the proposed algorithm by reducing a general 4x4-bit multiplication to a single 2 x 2-bit multiplication operation.

Prioritization Method in the Fuzzy Analytic Network Process by Fuzzy Preferences Programming Method

In this paper, a method for deriving a group priority vector in the Fuzzy Analytic Network Process (FANP) is proposed. By introducing importance weights of multiple decision makers (DMs) based on their experiences, the Fuzzy Preferences Programming Method (FPP) is extended to a fuzzy group prioritization problem in the FANP. Additionally, fuzzy pair-wise comparison judgments are presented rather than exact numerical assessments in order to model the uncertainty and imprecision in the DMs- judgments and then transform the fuzzy group prioritization problem into a fuzzy non-linear programming optimization problem which maximize the group satisfaction. Unlike the known fuzzy prioritization techniques, the new method proposed in this paper can easily derive crisp weights from incomplete and inconsistency fuzzy set of comparison judgments and does not require additional aggregation producers. Detailed numerical examples are used to illustrate the implement of our approach and compare with the latest fuzzy prioritization method.

Similar Cultural Factors Compensate for Communication Problems in Japan's Software Globalization Business

A research effort to find the reality of the business of Japan-s software globalization of enterprise-level business software systems has found that while the number of Japan-made enterpriselevel software systems is comparable with those of the other G7 countries, the business is limited to the East and Southeast Asian markets. This indicates that this business has a problem in the European and USA markets. Based on the knowledge that the research has established, the research concludes that the communication problems arise from the lack of individualists' communication styles and foreign language skills in Japan's software globalization is compensated by similarities in certain Japanese cultural factors and Japan's cultural power in the East and Southeast Asian markets and that this business does not have this compensation factor in the European and American markets due to dissimilarities and no cultural power.

Assessment of the Vulnerability and Risk of Climate Change on Water Supply and Demand in Taijiang Area

The development of sustainable utilization water resources is crucial. The ecological environment and water resources systems form the foundation of the existence and development of the social economy. The urban ecological support system depends on these resources as well. This research studies the vulnerability, criticality, and risk of climate change on water supply and demand in the main administrative district of the Taijiang Area (Tainan City). Based on the two situations set in this paper and various factors (indexes), this research adopts two kinds of weights (equal and AHP) to conduct the calculation and establish the water supply and demand risk map for the target year 2039. According to the risk analysis result, which is based on equal weight, only one district belongs to a high-grade district (Grade 4). Based on the AHP weight, 16 districts belong to a high-grade or higher-grade district (Grades 4 and 5), and from among them, two districts belong to the highest grade (Grade 5). These results show that the risk level of water supply and demand in cities is higher than that in towns. The government generally gives more attention to the adjustment strategy in the “cities." However, it should also provide proper adjustment strategies for the “towns" to be able to cope with the risks of water supply and demand.

Reality and Preferences in Community Mopane (Colophospermum Mopane) Woodland Management in Zimbabwe and Namibia

There is increasing pressure on, and decline of mopane woodlands due to increasing use and competition for mopane resources in Zimbabwe in Namibia. Community management strategies, based largely on local knowledge are evidently unable to cope. Research has generated potentially useful information for mopane woodland management, but this information has not been utilized. The work reported in this paper sought to add value to research work conducted on mopane woodlands by developing effective community-based mopane woodland management regimes that were based on both local and scientific knowledge in Zimbabwe and Namibia. The conditions under which research findings were likely to be adopted for mopane woodland management by communities were investigated. The study was conducted at two sites each in Matobo and Omusati Districts in Zimbabwe and Namibia respectively. The mopane woodland resources in the two study areas were assessed using scientific ecological methods. A range of participatory methods was used to collect information on use of mopane woodland resources by communities, institutional arrangements governing access to and use of these resources and to evaluate scientific knowledge for applicability in local management regimes. Coppicing, thinning and pollarding were the research generated management methods evaluated. Realities such as availability of woodland resources and social roles and responsibilities influenced preferences for woodland management interventions

Radar Task Schedulers based on Multiple Queue

There are very complex communication systems, as the multifunction radar, MFAR (Multi-Function Array Radar), where functions are integrated all together, and simultaneously are performed the classic functions of tracking and surveillance, as all the functions related to the communication, countermeasures, and calibration. All these functions are divided into the tasks to execute. The task scheduler is a key element of the radar, since it does the planning and distribution of energy and time resources to be shared and used by all tasks. This paper presents schedulers based on the use of multiple queue. Several schedulers have been designed and studied, and it has been made a comparative analysis of different performed schedulers. The tests and experiments have been done by means of system software simulation. Finally a suitable set of radar characteristics has been selected to evaluate the behavior of the task scheduler working.

Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Modified Montgomery for RSA Cryptosystem

Encryption and decryption in RSA are done by modular exponentiation which is achieved by repeated modular multiplication. Hence efficiency of modular multiplication directly determines the efficiency of RSA cryptosystem. This paper designs a Modified Montgomery Modular Multiplication in which addition of operands is computed by 4:2 compressor. The basic logic operations in addition are partitioned over two iterations such that parallel computations are performed. This reduces the critical path delay of proposed Montgomery design. The proposed design and RSA are implemented on Virtex 2 and Virtex 5 FPGAs. The two factors partitioning and parallelism have improved the frequency and throughput of proposed design.

A PSO-based SSSC Controller for Improvement of Transient Stability Performance

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

The Frame Analysis and Testing for Student Formula

The objective of this paper is to study the analysis and testing for determining the torsional stiffness of the student formula-s space frame. From past study, the space frame for Chulalongkorn University Student Formula team used in 2011 TSAE Auto Challenge Student Formula in Thailand was designed by considering required mass and torsional stiffness based on the numerical method and experimental method. The numerical result was compared with the experimental results to verify the torsional stiffness of the space frame. It can be seen from the large error of torsional stiffness of 2011 frame that the experimental result can not verify by the numerical analysis due to the different between the numerical model and experimental setting. In this paper, the numerical analysis and experiment of the same 2011 frame model is performed by improving the model setting. The improvement of both numerical analysis and experiment are discussed to confirm that the models from both methods are same. After the frame was analyzed and tested, the results are compared to verify the torsional stiffness of the frame. It can be concluded that the improved analysis and experiments can used to verify the torsional stiffness of the space frame.

Optimal Controllers with Actuator Saturation for Nonlinear Structures

Since the actuator capacity is limited, in the real application of active control systems under sever earthquakes it is conceivable that the actuators saturate, hence the actuator saturation should be considered as a constraint in design of optimal controllers. In this paper optimal design of active controllers for nonlinear structures by considering actuator saturation, has been studied. The proposed method for designing optimal controllers is based on defining an optimization problem which the objective has been to minimize the maximum displacement of structure when a limited capacity for actuator has been used. To this end a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of prestressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used. To achieve the best results, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been optimized by the Distributed Genetic Algorithm (DGA). Results show the effectiveness of the proposed method in considering actuator saturation. Also based on the numerical simulations it can be concluded that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers which consider the actuator saturation.

Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)

This paper presents a comparative study on two most popular control strategies for Permanent Magnet Synchronous Motor (PMSM) drives: field-oriented control (FOC) and direct torque control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Blockset that allows a complete representation of the power section (inverter and PMSM) and the control system. The simulation and evaluation of both control strategies are performed using actual parameters of Permanent Magnet Synchronous Motor fed by an IGBT PWM inverter.

Design of Modular Robotic Joints for Achieving Various Robot Configurations

This paper describes various stages of design and prototyping of a modular robot for use in various industrial applications. The major goal of current research has been to design and make different robotic joints at low cost capable of being assembled together in any given order for achieving various robot configurations. Five different types of joins were designed and manufactured where extensive research has been carried out on the design of each joint in order to achieve optimal strength, size, modularity, and price. This paper presents various stages of research and development undertaken to engineer these joints that include material selection, manufacturing, and strength analysis. The outcome of this research addresses the birth of a new generation of modular industrial robots with a wider range of applications and greater efficiency.

Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay

In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.

The Impact of Process Parameters on the Output Characteristics of an LDMOS Device

In this paper, we have examined the effect of process parameter variation on the electrical characteristics of an LDMOS device. The rate of change in the electrical parameters such as cut off frequency, breakdown voltage and drain saturation current as a function of the process parameters is investigated

A New Version of Annotation Method with a XML-based Knowledge Base

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.

Evaluating New Service Development Performance Based on Multigranular Linguistic Assessment

The service sector continues to grow and the percentage of GDP accounted for by service industries keeps increasing. The growth and importance of service to an economy is not just a phenomenon of advanced economies, service is now a majority of the world gross domestic products. However, the performance evaluation process of new service development problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of new service development manipulates the heterogeneity integration processes and avoids the information loss effectively.

Stability Verification for Bilateral Teleoperation System with Variable Time Delay

Time delay in bilateral teleoperation system was introduced as a sufficient reason to make the system unstable or certainly degrade the system performance. In this paper, simulations and experimental results of implementing p-like control scheme, under different ranges of variable time delay, will be presented to verify a certain criteria, which guarantee the system stability and position tracking. The system consists of two Phantom premium 1.5A devices. One of them acts as a master and the other acts as a slave. The study includes deriving the Phantom kinematic and dynamic model, establishing the link between the two Phantoms over Simulink in Matlab, and verifying the stability criteria with simulations and real experiments.

Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux

Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.