Performance Evaluation of an Online Text-Based Strategy Game

Text-based game is supposed to be a low resource consumption application that delivers good performances when compared to graphical-intensive type of games. But, nowadays, some of the online text-based games are not offering performances that are acceptable to the users. Therefore, an online text-based game called Star_Quest has been developed in order to analyze its behavior under different performance measurements. Performance metrics such as throughput, scalability, response time and page loading time are captured to yield the performance of the game. The techniques in performing the load testing are also disclosed to exhibit the viability of our work. The comparative assessment between the results obtained and the accepted level of performances are conducted as to determine the performance level of the game. The study reveals that the developed game managed to meet all the performance objectives set forth.

Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Security Analysis of Password Hardened Multimodal Biometric Fuzzy Vault

Biometric techniques are gaining importance for personal authentication and identification as compared to the traditional authentication methods. Biometric templates are vulnerable to variety of attacks due to their inherent nature. When a person-s biometric is compromised his identity is lost. In contrast to password, biometric is not revocable. Therefore, providing security to the stored biometric template is very crucial. Crypto biometric systems are authentication systems, which blends the idea of cryptography and biometrics. Fuzzy vault is a proven crypto biometric construct which is used to secure the biometric templates. However fuzzy vault suffer from certain limitations like nonrevocability, cross matching. Security of the fuzzy vault is affected by the non-uniform nature of the biometric data. Fuzzy vault when hardened with password overcomes these limitations. Password provides an additional layer of security and enhances user privacy. Retina has certain advantages over other biometric traits. Retinal scans are used in high-end security applications like access control to areas or rooms in military installations, power plants, and other high risk security areas. This work applies the idea of fuzzy vault for retinal biometric template. Multimodal biometric system performance is well compared to single modal biometric systems. The proposed multi modal biometric fuzzy vault includes combined feature points from retina and fingerprint. The combined vault is hardened with user password for achieving high level of security. The security of the combined vault is measured using min-entropy. The proposed password hardened multi biometric fuzzy vault is robust towards stored biometric template attacks.

Direct Measurements of Wind Data over 100 Meters above the Ground in the Site of Lendinara, Italy

The wind resource in the Italian site of Lendinara (RO) is analyzed through a systematic anemometric campaign performed on the top of the bell tower, at an altitude of over 100 m above the ground. Both the average wind speed and the Weibull distribution are computed. The resulting average wind velocity is in accordance with the numerical predictions of the Italian Wind Atlas, confirming the accuracy of the extrapolation of wind data adopted for the evaluation of wind potential at higher altitudes with respect to the commonly placed measurement stations.

Improved Segmentation of Speckled Images Using an Arithmetic-to-Geometric Mean Ratio Kernel

In this work, we improve a previously developed segmentation scheme aimed at extracting edge information from speckled images using a maximum likelihood edge detector. The scheme was based on finding a threshold for the probability density function of a new kernel defined as the arithmetic mean-to-geometric mean ratio field over a circular neighborhood set and, in a general context, is founded on a likelihood random field model (LRFM). The segmentation algorithm was applied to discriminated speckle areas obtained using simple elliptic discriminant functions based on measures of the signal-to-noise ratio with fractional order moments. A rigorous stochastic analysis was used to derive an exact expression for the cumulative density function of the probability density function of the random field. Based on this, an accurate probability of error was derived and the performance of the scheme was analysed. The improved segmentation scheme performed well for both simulated and real images and showed superior results to those previously obtained using the original LRFM scheme and standard edge detection methods. In particular, the false alarm probability was markedly lower than that of the original LRFM method with oversegmentation artifacts virtually eliminated. The importance of this work lies in the development of a stochastic-based segmentation, allowing an accurate quantification of the probability of false detection. Non visual quantification and misclassification in medical ultrasound speckled images is relatively new and is of interest to clinicians.

Towards an AS Level Network Performance Model

In order to research Internet quantificationally and better model the performance of network, this paper proposes a novel AS level network performance model (MNPM), it takes autonomous system (AS) as basic modeling unit, measures E2E performance between any two outdegrees of an AS and organizes measurement results into matrix form which called performance matrix (PM). Inter-AS performance calculation is defined according to performance information stored in PM. Simulation has been implemented to verify the correctness of MNPM and a practical application of MNPM (network congestion detection) is given.

Quantitative Quality Assessment of Microscopic Image Mosaicing

The mosaicing technique has been employed in more and more application fields, from entertainment to scientific ones. In the latter case, often the final evaluation is still left to human beings, that assess visually the quality of the mosaic. Many times, a lack of objective measurements in microscopic mosaicing may prevent the mosaic from being used as a starting image for further analysis. In this work we analyze three different metrics and indexes, in the domain of signal analysis, image analysis and visual quality, to measure the quality of different aspects of the mosaicing procedure, such as registration errors and visual quality. As the case study we consider the mosaicing algorithm we developed. The experiments have been carried out by considering mosaics with very different features: histological samples, that are made of detailed and contrasted images, and live stem cells, that show a very low contrast and low detail levels.

A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Unified Method to Block Pornographic Images in Websites

This paper proposes a technique to block adult images displayed in websites. The filter is designed so as to perform even in exceptional cases such as, where face detection is not possible or improper face visibility. This is achieved by using an alternative phase to extract the MFC (Most Frequent Color) from the Human Body regions estimated using a biometric of anthropometric distances between fixed rigidly connected body locations. The logical results generated can be protected from overriding by a firewall or intrusion, by encrypting the result in a SSH data packet.

Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.

A Mathematical Representation for Mechanical Model Assessment: Numerical Model Qualification Method

This article illustrates a model selection management approach for virtual prototypes in interactive simulations. In those numerical simulations, the virtual prototype and its environment are modelled as a multiagent system, where every entity (prototype,human, etc.) is modelled as an agent. In particular, virtual prototyp ingagents that provide mathematical models of mechanical behaviour inform of computational methods are considered. This work argues that selection of an appropriate model in a changing environment,supported by models? characteristics, can be managed by the deter-mination a priori of specific exploitation and performance measures of virtual prototype models. As different models exist to represent a single phenomenon, it is not always possible to select the best one under all possible circumstances of the environment. Instead the most appropriate shall be selecting according to the use case. The proposed approach consists in identifying relevant metrics or indicators for each group of models (e.g. entity models, global model), formulate their qualification, analyse the performance, and apply the qualification criteria. Then, a model can be selected based on the performance prediction obtained from its qualification. The authors hope that this approach will not only help to inform engineers and researchers about another approach for selecting virtual prototype models, but also assist virtual prototype engineers in the systematic or automatic model selection.

Finite Element Study of a DfD Beam-Column Connection

Design for Disassembly (DfD) aims to reuse the structural components instead of demolition followed by recycling of the demolition debris. This concept preserves the invested embodied energy of materials, thus reducing inputs of new embodied energy during materials reprocessing or remanufacturing. Both analytical and experimental research on a proposed DfD beam-column connection for use in residential apartments is currently investigated at the National University of Singapore in collaboration with the Housing and Development Board of Singapore. The present study reports on the results of a numerical analysis of the proposed connection utilizing finite element analysis. The numerical model was calibrated and validated by comparison against experimental results. Results of a parametric study will also be presented and discussed.

New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System

New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.

The Influence of Electrode Heating On the Force Generated On a High Voltage Capacitor with Asymmetrical Electrodes

When a high DC voltage is applied to a capacitor with strongly asymmetrical electrodes, it generates a mechanical force that affects the whole capacitor. This is caused by the motion of ions generated around the smaller of the two electrodes and their subsequent interaction with the surrounding medium. If one of the electrodes is heated, it changes the conditions around the capacitor and influences the process of ionisation, thus changing the value of the generated force. This paper describes these changes and gives reasons behind them. Further the experimental results are given as proof of the ionic mechanism of the phenomenon.

A Mobile Multihop Relay Dynamic TDD Scheme for Cellular Networks

In this paper, we present an analytical framework for the evaluation of the uplink performance of multihop cellular networks based on dynamic time division duplex (TDD). New wireless broadband protocols, such as WiMAX, WiBro, and 3G-LTE apply TDD, and mobile communication protocols under standardization (e.g., IEEE802.16j) are investigating mobile multihop relay (MMR) as a future technology. In this paper a novel MMR TDD scheme is presented, where the dynamic range of the frame is shared to traffic resources of asymmetric nature and multihop relaying. The mobile communication channel interference model comprises of inner and co-channel interference (CCI). The performance analysis focuses on the uplink due to the fact that the effects of dynamic resource allocation show significant performance degradation only in the uplink compared to time division multiple access (TDMA) schemes due to CCI [1-3], where the downlink results to be the same or better.The analysis was based on the signal to interference power ratio (SIR) outage probability of dynamic TDD (D-TDD) and TDMA systems,which are the most widespread mobile communication multi-user control techniques. This paper presents the uplink SIR outage probability with multihop results and shows that the dynamic TDD scheme applying MMR can provide a performance improvement compared to single hop applications if executed properly.

Regional Analysis of Streamflow Drought: A Case Study for Southwestern Iran

Droughts are complex, natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts, such as meteorological, agricultural, hydrological, and socioeconomical are distinguished. Streamflow drought was analyzed by the method of truncation level (at 70% level) on daily discharges measured in 54 hydrometric stations in southwestern Iran. Frequency analysis was carried out for annual maximum series (AMS) of drought deficit volume and duration series. Some factors including physiographic, climatic, geologic, and vegetation cover were studied as influential factors in the regional analysis. According to the results of factor analysis, six most effective factors were identified as area, rainfall from December to February, the percent of area with Normalized Difference Vegetation Index (NDVI)

Learning Block Memories with Metric Networks

An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.

Some Laws of Rhythm Formulas of Ussuli in the Dancing Culture of People in the Middle and the Central Asia

In the national and professional music of oral tradition of many people in the East there is the metric formula called “ussuli", that is to say rhythmic constructions of different character and a composition. Ussuli in translation from Arabic means the law. The cultural contacts of the ancient and medieval inhabitants of the Central Asia, India, China, East Turkestan, Iraq, Afghanistan, Turkey, and Iran have played a certain role in formation of both musical and dancing heritage of each of these people. During theatrical shows many dances were performed under the accompaniment of percussion instruments as nagra, dayulpaz, doll. The abovementioned tools are used as the obligatory accompanying tool in an orchestra and at support of dancing acts as the solo tool. Dynamics of development of a dancing composition, at times execution of technique of movement depends on various combinations of ussuli and their receptions of execution.

Fuzzy Neuro Approach to Busbar Protection; Design and Implementation

This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.