Reliability Evaluation of Composite Electric Power System Based On Latin Hypercube Sampling

This paper investigates the suitability of Latin Hypercube sampling (LHS) for composite electric power system reliability analysis. Each sample generated in LHS is mapped into an equivalent system state and used for evaluating the annualized system and load point indices. DC loadflow based state evaluation model is solved for each sampled contingency state. The indices evaluated are loss of load probability, loss of load expectation, expected demand not served and expected energy not supplied. The application of the LHS is illustrated through case studies carried out using RBTS and IEEE-RTS test systems. Results obtained are compared with non-sequential Monte Carlo simulation and state enumeration analytical approaches. An error analysis is also carried out to check the LHS method’s ability to capture the distributions of the reliability indices. It is found that LHS approach estimates indices nearer to actual value and gives tighter bounds of indices than non-sequential Monte Carlo simulation.

Steady State Simulation of Power Systems with Change in Topology

In power system protection, the need to know the load current together with the fault level detected by a relay is important. This is due to the fact that the relay is required to isolate the equipment being protected if a fault is present and keep the breaker associated with it closed if the current level is lower than the maximum load level. This is not an issue for a radial system. This is not the same however in a looped power system. In a looped power system, the isolation of an equipment system will contribute to a topology change. The change in the power system topology will then influence or change the maximum load current and the fault level detected by each relay. In this paper, a method of data collection for changing topology using matlab and sim-power will be presented. The method will take into consideration the change in topology and collect data for each possible topology.

On using PEMFC for Electrical Power Generation on More Electric Aircraft

The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing electrical generation and distribution systems of an aircraft. The dynamic characteristics of fuel cell systems necessitate an adaptation of the electrical power system. The architecture studied in this paper consists of a 50kW fuel cell, a dc to dc converter and several loads. The dc to dc converter is used to step down the fuel cell voltage from about 625Vdc to 28Vdc.

Intelligent Neural Network Based STLF

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Static Voltage Stability Assessment Considering the Power System Contingencies using Continuation Power Flow Method

According to the increasing utilization in power system, the transmission lines and power plants often operate in stability boundary and system probably lose its stable condition by over loading or occurring disturbance. According to the reasons that are mentioned, the prediction and recognition of voltage instability in power system has particular importance and it makes the network security stronger.This paper, by considering of power system contingencies based on the effects of them on Mega Watt Margin (MWM) and maximum loading point is focused in order to analyse the static voltage stability using continuation power flow method. The study has been carried out on IEEE 14-Bus Test System using Matlab and Psat softwares and results are presented.

Reliability Assessment of Bangladesh Power System Using Recursive Algorithm

An electric utility-s main concern is to plan, design, operate and maintain its power supply to provide an acceptable level of reliability to its users. This clearly requires that standards of reliability be specified and used in all three sectors of the power system, i.e., generation, transmission and distribution. That is why reliability of a power system is always a major concern to power system planners. This paper presents the reliability analysis of Bangladesh Power System (BPS). Reliability index, loss of load probability (LOLP) of BPS is evaluated using recursive algorithm and considering no de-rated states of generators. BPS has sixty one generators and a total installed capacity of 5275 MW. The maximum demand of BPS is about 5000 MW. The relevant data of the generators and hourly load profiles are collected from the National Load Dispatch Center (NLDC) of Bangladesh and reliability index 'LOLP' is assessed for the period of last ten years.

Hydrophobic Characteristics of EPDM Composite Insulators in Simulated Arid Desert Environment

Overhead electrical insulators form an important link in an electric power system. Along with the traditional insulators (i.e. glass and porcelain, etc) presently the polymeric insulators are also used world widely. These polymeric insulators are very sensitive to various environmental parameters such temperature, environmental pollution, UV-radiations, etc. which seriously effect their electrical, chemical and hydrophobic properties. The UV radiation level in the central region of Saudi Arabia is high as compared to the IEC standard for the accelerated aging of the composite insulators. Commonly used suspension type of composite EPDM (Ethylene Propylene Diene Monomer) insulator was subjected to accelerated stress aging as per modified IEC standard simulating the inland arid deserts atmospheric condition and also as per IEC-61109 standard. The hydrophobic characteristics were studied by measuring the contact angle along the insulator surface before and after the accelerated aging of the samples. It was found that EPDM insulator loses it hydrophobic properties proportional to the intensity of UV irradiations and its rate of recovery is also very low as compared to Silicone Rubber insulator.KeywordsEPDM, composite insulators, accelerated aging, hydrophobicity, contact angle.

Approach to Implementation of Power Management with Load Prioritizations in Modern Civil Aircraft

Any use of energy in industrial productive activities is combined with various environment impacts. Withintransportation, this fact was not only found among land transport, railways and maritime transport, but also in the air transport industry. An effective climate protection requires strategies and measures for reducing all greenhouses gas emissions, in particular carbon dioxide, and must take into account the economic, ecologic and social aspects. It seem simperative now to develop and manufacture environmentally friendly products and systems, to reduce consumption and use less resource, and to save energy and power. Today-sproducts could better serve these requirements taking into account the integration of a power management system into the electrical power system.This paper gives an overview of an approach ofpower management with load prioritization in modernaircraft. Load dimensioning and load management strategies on current civil aircraft will be presented and used as a basis for the proposed approach.

Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Energy Efficiency and Renewable for Power System in Macedonia

The deficit of power supply in Macedonia is almost 30% or reached up to 3000 GWh in a year. The existing thermal and hydro power plants are not enough to cover the power and energy, so the import increases every year. Therefore, in order to have more domestic energy supply, the new trends in renewable and energy efficiency should be implemented in power sector. The paper gives some perspectives for development of the power system in Macedonia, taking into account the growth of electricity demand and in the same time with implementation of renewable and energy efficiency. The development of power system is made for the period up to 2030 with the period of every 5 years.

A PI Controller for Enhancing the Transient Stability of Multi Pulse Inverter Based Static Synchronous Series Compensator (SSSC) With Superconducting Magnetic Energy Storage(SMES)

The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the system. Today-s enhancement of technology makes it possible to include new energy storage devices in the electric power system. In addition, with the aid of power electronic devices, it is possible to independently exchange active and reactive power flow with the utility grid. The main purpose of this paper proposes a Proportional – Integral (PI) control based 48 – pulse Inverter based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) used for enhancing the transient stability and regulating power flow in automatic mode. Using a test power system through the dynamic simulation in Matlab/Simulink platform validates the performance of the proposed SSSC with and without SMES system.

A Hybrid Fuzzy AGC in a Competitive Electricity Environment

This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

Stochastic Programming Model for Power Generation

We consider power system expansion planning under uncertainty. In our approach, integer programming and stochastic programming provide a basic framework. We develop a multistage stochastic programming model in which some of the variables are restricted to integer values. By utilizing the special property of the problem, called block separable recourse, the problem is transformed into a two-stage stochastic program with recourse. The electric power capacity expansion problem is reformulated as the problem with first stage integer variables and continuous second stage variables. The L-shaped algorithm to solve the problem is proposed.

Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

GA based Optimal Sizing and Placement of Distributed Generation for Loss Minimization

This paper addresses a novel technique for placement of distributed generation (DG) in electric power systems. A GA based approach for sizing and placement of DG keeping in view of system power loss minimization in different loading conditions is explained. Minimal system power loss is obtained under voltage and line loading constraints. Proposed strategy is applied to power distribution systems and its effectiveness is verified through simulation results on 16, 37-bus and 75-bus test systems.

Optimal Supplementary Damping Controller Design for TCSC Employing RCGA

Optimal supplementary damping controller design for Thyristor Controlled Series Compensator (TCSC) is presented in this paper. For the proposed controller design, a multi-objective fitness function consisting of both damping factors and real part of system electromachanical eigenvalue is used and Real- Coded Genetic Algorithm (RCGA) is employed for the optimal supplementary controller parameters. The performance of the designed supplementary TCSC-based damping controller is tested on a weakly connected power system with different disturbances and loading conditions with parameter variations. Simulation results are presented and compared with a conventional power system stabilizer and also with the TCSC-based supplementary controller when the controller parameters are not optimized to show the effectiveness and robustness of the proposed approach over a wide range of loading conditions and disturbances.

A New Method Presentation for Fault Location in Power Transformers

Power transformers are among the most important and expensive equipments in the electric power systems. Consequently the transformer protection is an essential part of the system protection. This paper presents a new method for locating transformer winding faults such as turn-to-turn, turn-to-core, turn-totransformer body, turn-to-earth, and high voltage winding to low voltage winding. In this study the current and voltage signals of input and output terminals of the transformer are measured, which the Fourier transform of measured signals and harmonic analysis determine the fault's location.

Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique

This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.

Sensitivity Analysis in Power Systems Reliability Evaluation

In this paper sensitivity analysis is performed for reliability evaluation of power systems. When examining the reliability of a system, it is useful to recognize how results change as component parameters are varied. This knowledge helps engineers to understand the impact of poor data, and gives insight on how reliability can be improved. For these reasons, a sensitivity analysis can be performed. Finally, a real network was used for testing the presented method.