Breast Cancer Treatment Evaluation based on Mammographic and Echographic Distance Computing

Accurate assessment of the primary tumor response to treatment is important in the management of breast cancer. This paper introduces a new set of treatment evaluation indicators for breast cancer cases based on the computational process of three known metrics, the Euclidian, Hamming and Levenshtein distances. The distance principals are applied to pairs of mammograms and/or echograms, recorded before and after treatment, determining a reference point in judging the evolution amount of the studied carcinoma. The obtained numerical results are indeed very transparent and indicate not only the evolution or the involution of the tumor under treatment, but also a quantitative measurement of the benefit in using the selected method of treatment.

Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames

Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that just in stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations.

Climate Change Finger Prints in Mountainous Upper Euphrates Basin

Climate change leading to global warming affects the earth through many different ways such as weather (temperature, precipitation, humidity and the other parameters of weather), snow coverage and ice melting, sea level rise, hydrological cycles, quality of water, agriculture, forests, ecosystems and health. One of the most affected areas by climate change is hydrology and water resources. Regions where majority of runoff consists of snow melt are more sensitive to climate change. The first step of climate change studies is to establish trends of significant climate variables including precipitation, temperature and flow data to detect any potential climate change impacts already happened. Two popular non-parametric trend analysis methods, Mann-Kendal and Spearman-s Rho were applied to Upper Euphrates Basin (Turkey) to detect trends of precipitation, temperatures (maximum, minimum and average) and streamflow.

Topology Optimization of Cable Truss Web for Prestressed Suspension Bridge

A suspension bridge is the most suitable type of structure for a long-span bridge due to rational use of structural materials. Increased deformability, which is conditioned by appearance of the elastic and kinematic displacements, is the major disadvantage of suspension bridges. The problem of increased kinematic displacements under the action of non-symmetrical load can be solved by prestressing. The prestressed suspension bridge with the span of 200 m was considered as an object of investigations. The cable truss with the cross web was considered as the main load carrying structure of the prestressed suspension bridge. The considered cable truss was optimized by 47 variable factors using Genetic algorithm and FEM program ANSYS. It was stated, that the maximum total displacements are reduced up to 29.9% by using of the cable truss with the rational characteristics instead of the single cable in the case of the worst situated load.

A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Gabriel-constrained Parametric Surface Triangulation

The Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2 -! R3). In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs. In the existing literature there are no guarantees for the point (iii). This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameterindependent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv). In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii). Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correct.

Application of Biometrics to Obtain High Entropy Cryptographic Keys

In this paper, a two factor scheme is proposed to generate cryptographic keys directly from biometric data, which unlike passwords, are strongly bound to the user. Hash value of the reference iris code is used as a cryptographic key and its length depends only on the hash function, being independent of any other parameter. The entropy of such keys is 94 bits, which is much higher than any other comparable system. The most important and distinct feature of this scheme is that it regenerates the reference iris code by providing a genuine iris sample and the correct user password. Since iris codes obtained from two images of the same eye are not exactly the same, error correcting codes (Hadamard code and Reed-Solomon code) are used to deal with the variability. The scheme proposed here can be used to provide keys for a cryptographic system and/or for user authentication. The performance of this system is evaluated on two publicly available databases for iris biometrics namely CBS and ICE databases. The operating point of the system (values of False Acceptance Rate (FAR) and False Rejection Rate (FRR)) can be set by properly selecting the error correction capacity (ts) of the Reed- Solomon codes, e.g., on the ICE database, at ts = 15, FAR is 0.096% and FRR is 0.76%.

The Effects of Asymmetric Bracing on Steel Structures under Seismic Loads

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Application of Generalized NAUT B-Spline Curveon Circular Domain to Generate Circle Involute

In the present paper, we use generalized B-Spline curve in trigonometric form on circular domain, to capture the transcendental nature of circle involute curve and uncertainty characteristic of design. The required involute curve get generated within the given tolerance limit and is useful in gear design.

Catalytical Effect of Fluka 05120 on Methane Decomposition

Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.

Shock Induced Damage onto Free-Standing Objects in an Earthquake

In areas of low to moderate seismicity many building contents and equipment are not positively fixed to the floor or tied to adjacent walls. Under seismic induced horizontal vibration, such contents and equipment can suffer from damage by either overturning or impact associated with rocking. This paper focuses on the estimation of shock on typical contents and equipment due to rocking. A simplified analytical model is outlined that can be used to estimate the maximum acceleration on a rocking object given its basic geometric and mechanical properties. The developed model was validated against experimental results. The experimental results revealed that the maximum shock acceleration can be underestimated if the static stiffness of the materials at the interface between the rocking object and floor is used rather than the dynamic stiffness. Excellent agreement between the model and experimental results was found when the dynamic stiffness for the interface material was used, which was found to be generally much higher than corresponding static stiffness under different investigated boundary conditions of the cushion. The proposed model can be a beneficial tool in performing a rapid assessment of shock sensitive components considered for possible seismic rectification. 

Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm

Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.

Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter

Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.

Theoretical Considerations for Software Component Metrics

We have defined two suites of metrics, which cover static and dynamic aspects of component assembly. The static metrics measure complexity and criticality of component assembly, wherein complexity is measured using Component Packing Density and Component Interaction Density metrics. Further, four criticality conditions namely, Link, Bridge, Inheritance and Size criticalities have been identified and quantified. The complexity and criticality metrics are combined to form a Triangular Metric, which can be used to classify the type and nature of applications. Dynamic metrics are collected during the runtime of a complete application. Dynamic metrics are useful to identify super-component and to evaluate the degree of utilisation of various components. In this paper both static and dynamic metrics are evaluated using Weyuker-s set of properties. The result shows that the metrics provide a valid means to measure issues in component assembly. We relate our metrics suite with McCall-s Quality Model and illustrate their impact on product quality and to the management of component-based product development.

Performance Evaluation of an Amperometric Biosensor using a Simple Microcontroller based Data Acquisition System

In this paper we have proposed a methodology to develop an amperometric biosensor for the analysis of glucose concentration using a simple microcontroller based data acquisition system. The work involves the development of Detachable Membrane Unit (enzyme based biomembrane) with immobilized glucose oxidase on the membrane and interfacing the same to the signal conditioning system. The current generated by the biosensor for different glucose concentrations was signal conditioned, then acquired and computed by a simple AT89C51-microcontroller. The optimum operating parameters for the better performance were found and reported. The detailed performance evaluation of the biosensor has been carried out. The proposed microcontroller based biosensor system has the sensitivity of 0.04V/g/dl, with a resolution of 50mg/dl. It has exhibited very good inter day stability observed up to 30 days. Comparing to the reference method such as HPLC, the accuracy of the proposed biosensor system is well within ± 1.5%. The system can be used for real time analysis of glucose concentration in the field such as, food and fermentation and clinical (In-Vitro) applications.

An Improved Method to Watermark Images Sensitive to Blocking Artifacts

A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multiple watermarks. An AFIS system was used to quantitatively evaluate the matching performance of the MDCT-based watermarked fingerprint. The high fingerprint matching scores show that the MDCT approach is resilient to blocking artifacts. The quality of the extracted face and extracted text images was computed using two human visual system metrics and the results show that the image quality was high.

An Efficient and Optimized Multi Constrained Path Computation for Real Time Interactive Applications in Packet Switched Networks

Quality of Service (QoS) Routing aims to find path between source and destination satisfying the QoS requirements which efficiently using the network resources and underlying routing algorithm and to fmd low-cost paths that satisfy given QoS constraints. One of the key issues in providing end-to-end QoS guarantees in packet networks is determining feasible path that satisfies a number of QoS constraints. We present a Optimized Multi- Constrained Routing (OMCR) algorithm for the computation of constrained paths for QoS routing in computer networks. OMCR applies distance vector to construct a shortest path for each destination with reference to a given optimization metric, from which a set of feasible paths are derived at each node. OMCR is able to fmd feasible paths as well as optimize the utilization of network resources. OMCR operates with the hop-by-hop, connectionless routing model in IP Internet and does not create any loops while fmding the feasible paths. Nodes running OMCR not necessarily maintaining global view of network state such as topology, resource information and routing updates are sent only to neighboring nodes whereas its counterpart link-state routing method depend on complete network state for constrained path computation and that incurs excessive communication overhead.

Investigation into Behavior of Suspen-Domes in Comparison with Single-Layer Domes

Prestressing in structure increases ratio of load-bearing capacity to weight. Suspendomes are single-layer braced domes reinforced with cable and strut. Prestressing of cables alter value and distribution of stress in structure. In this study two configuration, diamatic and lamella domes is selected. Investigated domes have span of 100m with rise-to-span ratios of 0.1, 0.2, and 0.3. Single layer domes loaded under service load combinations according to ISO code. After geometric nonlinear analysis, models are designed with tubular and I-shaped sections then reinforced with cable and strut and converted to suspendomes. Displacements and stresses of some groups of nodes and elements in all of single-layer domes and suspendomes for three load combinations, symmetric snow, asymmetric snow and wind are compared. Variation due to suspending system is investigated. Suspendomes are redesigned and minimum possible weight after addition of cable and strut is obtained.

Factorial Structure and Psychometric Validation of Ecotourism Experiential Value Construct: Insights from Taman Negara National Park, Malaysia

The purpose of this research is to disentangle and validate the underlying factorial-structure of Ecotourism Experiential Value (EEV) measurement scale and subsequently investigate its psychometric properties. The analysis was based on a sample of 225 eco-tourists, collected at the vicinity of Taman Negara National Park (TNNP) via interviewer-administered questionnaire. Exploratory factor analysis (EFA) was performed to determine the factorial structure of EEV. Subsequently, to confirm and validate the factorial structure and assess the psychometric properties of EEV, confirmatory factor analysis (CFA) was executed. In addition, to establish the nomological validity of EEV a structural model was developed to examine the effect of EEV on Total Eco-tourist Experience Quality (TEEQ). It is unveiled that EEV is a secondorder six-factorial structure construct and it scale has adequately met the psychometric criteria, thus could permit interpretation of results confidently. The findings have important implications for future research directions and management of ecotourism destination.

The Effects of Misspecification of Stochastic Processes on Investment Appraisal

For decades financial economists have been attempted to determine the optimal investment policy by recognizing the option value embedded in irreversible investment whose project value evolves as a geometric Brownian motion (GBM). This paper aims to examine the effects of the optimal investment trigger and of the misspecification of stochastic processes on investment in real options applications. Specifically, the former explores the consequence of adopting optimal investment rules on the distributions of corporate value under the correct assumption of stochastic process while the latter analyzes the influence on the distributions of corporate value as a result of the misspecification of stochastic processes, i.e., mistaking an alternative process as a GBM. It is found that adopting the correct optimal investment policy may increase corporate value by shifting the value distribution rightward, and the misspecification effect may decrease corporate value by shifting the value distribution leftward. The adoption of the optimal investment trigger has a major impact on investment to such an extent that the downside risk of investment is truncated at the project value of zero, thereby moving the value distributions rightward. The analytical framework is also extended to situations where collection lags are in place, and the result indicates that collection lags reduce the effects of investment trigger and misspecification on investment in an opposite way.