The Impact Behavior of the Predecessor and Successor on the Transmission of Family Businesses in Tunisia

Nowadays, financial and economic crises are growing more and reach more countries and sectors. These events have, as a result, a considerable impact on the activities of the firms which think unstable and in danger. But besides this heavy uncertainty which weighs on the different firms, the family firm, object of our research, is not only confronted with these external difficulties but also with an internal challenge and of size: that of transmission. Indeed, the transmission of an organization from one generation to another can succeed as it can fail; leaving considerable damage. Our research registers as part of these problems since we tried to understand relation between the behavior of two main actors of the process of succession, predecessor and successor; and the success of transmission.

Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Reduced Order Modelling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis

The authors present an algorithm for order reduction of linear time invariant dynamic systems using the combined advantages of the eigen spectrum analysis and the error minimization by particle swarm optimization technique. Pole centroid and system stiffness of both original and reduced order systems remain same in this method to determine the poles, whereas zeros are synthesized by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique, pertaining to a unit step input. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The algorithm is illustrated with the help of two numerical examples and the results are compared with the other existing techniques.

Design of Robust Fuzzy Logic Power System Stabilizer

Power system stabilizers (PSS) must be capable of providing appropriate stabilization signals over a broad range of operating conditions and disturbance. Traditional PSS rely on robust linear design method in an attempt to cover a wider range of operating condition. Expert or rule-based controllers have also been proposed. Recently fuzzy logic (FL) as a novel robust control design method has shown promising results. The emphasis in fuzzy control design center is around uncertainties in the system parameters & operating conditions. In this paper a novel Robust Fuzzy Logic Power System Stabilizer (RFLPSS) design is proposed The RFLPSS basically utilizes only one measurable Δω signal as input (generator shaft speed). The speed signal is discretized resulting in three inputs to the RFLPSS. There are six rules for the fuzzification and two rules for defuzzification. To provide robustness, additional signal namely, speed are used as inputs to RFLPSS enabling appropriate gain adjustments for the three RFLPSS inputs. Simulation studies show the superior performance of the RFLPSS compared with an optimally designed conventional PSS and discrete mode FLPSS.

Application of H2 -based Sliding Mode Control for an Active Magnetic Bearing System

In this paper, application of Sliding Mode Control (SMC) technique for an Active Magnetic Bearing (AMB) system with varying rotor speed is considered. The gyroscopic effect and mass imbalance inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Transformation of the AMB dynamic model into regular system shows that these gyroscopic effect and imbalance lie in the mismatched part of the system. A H2-based sliding surface is designed which bound the mismatched parts. The solution of the surface parameter is obtained using Linear Matrix Inequality (LMI). The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Compact Tunable 10 W picosecond Sourcebased on Yb-doped Fiber Amplification of Gain Switch Laser Diode

A compact tunable 10 W picosecond source based on Yb-doped fiber amplification of gain switch laser diode has been demonstrated. A gain switch semiconductor laser diode was used as the seed source, and a multi-stage single mode Yb-doped fiber preamplifier was combined with two large mode area double-clad Yb-doped fiber main amplifiers to construct the amplification system. The tunable pulses with high stability and excellent beam quality (M2

Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers

Method of multiple scales is used in the paper in order to derive an amplitude evolution equation for the most unstable mode from two-dimensional shallow water equations under the rigid-lid assumption. It is assumed that shallow mixing layer is slightly curved in the longitudinal direction and contains small particles. Dynamic interaction between carrier fluid and particles is neglected. It is shown that the evolution equation is the complex Ginzburg-Landau equation. Explicit formulas for the computation of the coefficients of the equation are obtained.

Optimal Speed Controller Design of the Two-Inertia Stabilization System

This paper focuses on systematic analysis and controller design of the two-inertia STABILIZATION system, considering the angular motion on a base body. This approach is essential to the stabilization system to aim at a target under three or six degrees of freedom base motion. Four controllers, such as conventional PDF(Pseudo-Derivative Feedback) controller with motor speed feedback, PDF controller with load speed feedback, modified PDF controller with motor-load speed feedback and feedforward controller added to modified PDF controller, are suggested to improve reference tracking and disturbance rejection performance. Characteristics and performance of each controller are analyzed and validated by simulation in the case of the modified PDF controller with and without a feedforward controller.

Stability of Discrete Linear Systems with Periodic Coefficients under Parametric Perturbations

This paper studies the problem of exponential stability of perturbed discrete linear systems with periodic coefficients. Assuming that the unperturbed system is exponentially stable we obtain conditions on the perturbations under which the perturbed system is exponentially stable.

Quantification of Periodicities in Fugitive Emission of Gases from Lyari Waterway

Periodicities in the environmetric time series can be idyllically assessed by utilizing periodic models. In this communication fugitive emission of gases from open sewer channel Lyari which follows periodic behaviour are approximated by employing periodic autoregressive model of order p. The orders of periodic model for each season are selected through the examination of periodic partial autocorrelation or information criteria. The parameters for the selected order of season are estimated individually for each emitted air toxin. Subsequently, adequacies of fitted models are established by examining the properties of the residual for each season. These models are beneficial for schemer and administrative bodies for the improvement of implemented policies to surmount future environmental problems.

A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Design of Non-Blocking and Rearrangeable Modified Banyan Network with Electro-Optic MZI Switching Elements

Banyan networks are really attractive for serving as the optical switching architectures due to their unique properties of small depth and absolute signal loss uniformity. The fact has been established that the limitations of blocking nature and the nonavailability of proper connections due to non-rearrangeable property can be easily ruled out using electro-optic MZI switches as basic switching elements. Combination of the horizontal expansion and vertical stacking of optical banyan networks is an appropriate scheme for constructing non-blocking banyan-based optical switching networks. The interconnected banyan switching fabrics (IBSF) have been considered and analyzed to best serve the purpose of optical switching with electro-optic MZI basic elements. The cross/bar state interchange for the switches has been facilitated by appropriate voltage switching or the by the switching of operating wavelength. The paper is dedicated to the modification of the basic switching element being used as well as the architecture of the switching network.

State Economic Safety in the Conditions of Innovative Economy Formation

Innovations and innovative activity get the increasing value for successful financial and economic activity of the countries and regions. The level of innovative sphere development determines place of a country or a region in world economy and forms a basis of steady economic growth. This article is devoted to different aspects of organization of the national economic safety in the conditions of innovative development, its problems, risks and threats. Economy can be considered as aspiring for transition to innovative way only with finding of economic safety: financial independence, power stability and technological progress. There are statistical indicators, defining the level of economic security and factors, threatening economic safety of the state. The research is based on the analysis of factors and indicators in conditions of innovative development. The paper is illustrated by the examples of possible estimated system of the economic safety level.

Physicochemical Properties of Microemulsions and their uses in Enhanced Oil Recovery

Use of microemulsion in enhanced oil recovery has become more attractive in recent years because of its high level of extraction efficiency. Experimental investigations have been made on characterization of microemulsions of oil-brinesurfactant/ cosurfactant system for its use in enhanced oil recovery (EOR). Sodium dodecyl sulfate, propan-1-ol and heptane were selected as surfactant, cosurfactant and oil respectively for preparation of microemulsion. The effects of salinity on the relative phase volumes and solubilization parameters have also been studied. As salinity changes from low to high value, phase transition takes place from Winsor I to Winsor II via Winsor III. Suitable microemulsion composition has been selected based on its stability and ability to reduce interfacial tension. A series of flooding experiments have been performed using the selected microemulsion. The flooding experiments were performed in a core flooding apparatus using uniform sand pack. The core holder was tightly packed with uniform sands (60-100 mesh) and saturated with brines of different salinities. It was flooded with the brine at 25 psig and the absolute permeability was calculated from the flow rate of the through sand pack. The sand pack was then flooded with the crude oil at 800 psig to irreducible water saturation. The initial water saturation was determined on the basis of mass balance. Waterflooding was conducted by placing the coreholder horizontally at a constant injection pressure at 200 pisg. After water flooding, when water-cut reached above 95%, around 0.5 pore volume (PV) of the above microemulsion slug was injected followed by chasing water. The experiments were repeated using different composition of microemulsion slug. The additional recoveries were calculated by material balance. Encouraging results with additional recovery more than 20% of original oil in place above the conventional water flooding have been observed.

A method of Authentication for Quantum Networks

Quantum cryptography offers a way of key agreement, which is unbreakable by any external adversary. Authentication is of crucial importance, as perfect secrecy is worthless if the identity of the addressee cannot be ensured before sending important information. Message authentication has been studied thoroughly, but no approach seems to be able to explicitly counter meet-in-the-middle impersonation attacks. The goal of this paper is the development of an authentication scheme being resistant against active adversaries controlling the communication channel. The scheme is built on top of a key-establishment protocol and is unconditionally secure if built upon quantum cryptographic key exchange. In general, the security is the same as for the key-agreement protocol lying underneath.

Molecular Dynamics Study on Laninamivir Inhibiting Neuraminidases of H5N1 and pH1N1 Influenza a Viruses

Viral influenza A subtypes H5N1 and pandemic H1N1 (pH1N1) have worldwide emerged and transmitted. The most common anti-influenza drug for treatment of both seasonal and pandemic influenza viruses is oseltamivir that nowadays becomes resistance to influenza neuraminidase. The novel long-acting drug, laninamivir, was discovered for treatment of the patients infected with influenza B and influenza A viruses. In the present study, laninamivir complexed with wild-type strain of both H5N1 and pH1N1 viruses were comparatively determined the structures and drug-target interactions by means of molecular dynamics (MD) simulations. The results show that the hydrogen bonding interactions formed between laninamivir and its binding residues are likely similar for the two systems. Additionally, the presence of intermolecular interactions from laninamivir to the residues in the binding pocket is established through their side chains in accordance with hydrogen bond interactions.

Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle

This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).

Analysis of Precipitation and Temperature Trends in Sefid-Roud Basin

Temperature, humidity and precipitation in an area, are parameters proved influential in the climate of that area, and one should recognize them so that he can determine the climate of that area. Climate changes are of primary importance in climatology, and in recent years, have been of great concern to researchers and even politicians and organizations, for they can play an important role in social, political and economic activities. Even though the real cause of climate changes or their stability is not yet fully recognized, they are a matter of concern to researchers and their importance for countries has prompted them to investigate climate changes in different levels, especially in regional, national and continental level. This issue has less been investigated in our country. However, in recent years, there have been some researches and conferences on climate changes. This study is also in line with such researches and tries to investigate and analyze the trends of climate changes (temperature and precipitation) in Sefid-roud (the name of a river) basin. Three parameters of mean annual precipitation, temperature, and maximum and minimum temperatures in 36 synoptic and climatology stations in a statistical period of 49 years (1956-2005) in the stations of Sefid-roud basin were analyzed by Mann-Kendall test. The results obtained by data analysis show that climate changes are short term and have a trend. The analysis of mean temperature revealed that changes have a significantly rising trend, besides the precipitation has a significantly falling trend.