About Methods of Additional Mining Pressure Figuring while Reconstruction of Tunnels

At the end of the 20th century it was actual the development of transport corridors and the improvement of their technical parameters. With this purpose, many countries and Georgia among them manufacture to construct new highways, railways and also reconstruction-modernization of the existing transport infrastructure. It is necessary to explore the artificial structures (bridges and tunnels) on the existing tracks as they are very old. Conference report includes the peculiarities of reconstruction of tunnels, because we think that this theme is important for the modernization of the existing road infrastructure. We must remark that the methods of determining mining pressure of tunnel reconstructions are worked out according to the jobs of new tunnels but it is necessary to foresee additional mining pressure which will be formed during their reconstruction. In this report there are given the methods of figuring the additional mining pressure while reconstruction of tunnels, there was worked out the computer program, it is determined that during reconstruction of tunnels the additional mining pressure is 1/3rd of main mining pressure.

Project Selection Using Fuzzy Group Analytic Network Process

This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.

Advancing the Theory of Planned Behavior within Dietary and Physical Domains among Type 2 Diabetics: A Mixed Methods Approach

Many studies have applied the Theory of Planned Behavior (TPB) in predicting health behaviors among unique populations. However, a new paradigm is emerging where focus is now directed to modification and expansion of the TPB model rather than utilization of the traditional theory. This review proposes new models modified from the Theory of Planned Behavior and suggest an appropriate study design that can be used to test the models within physical activity and dietary practice domains among Type 2 diabetics in Kenya. The review was conducted by means of literature search in the field of nutrition behavior, health psychology and mixed methods using predetermined key words. The results identify pre-intention and post intention gaps within the TPB model that need to be filled. Additional psychosocial factors are proposed to be included in the TPB model to generate new models and the efficacy of these models tested using mixed methods design.

Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks

The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.

Efficient CNC Milling by Adjusting Material Removal Rate

This paper describes a combined mathematicalgraphical approach for optimum tool path planning in order to improve machining efficiency. A methodology has been used that stabilizes machining operations by adjusting material removal rate in pocket milling operations while keeping cutting forces within limits. This increases the life of cutting tool and reduces the risk of tool breakage, machining vibration, and chatter. Case studies reveal the fact that application of this approach could result in a slight increase of machining time, however, a considerable reduction of tooling cost, machining vibration, noise and chatter can be achieved in addition to producing a better surface finish.

Numerical Method Based On Initial Value-Finite Differences for Free Vibration of Stepped Thickness Plates

The main objective of the present paper is to derive an easy numerical technique for the analysis of the free vibration through the stepped regions of plates. Based on the utilities of the step by step integration initial values IV and Finite differences FD methods, the present improved Initial Value Finite Differences (IVFD) technique is achieved. The first initial conditions are formulated in convenient forms for the step by step integrations while the upper and lower edge conditions are expressed in finite difference modes. Also compatibility conditions are created due to the sudden variation of plate thickness. The present method (IVFD) is applied to solve the fourth order partial differential equation of motion for stepped plate across two different panels under the sudden step compatibility in addition to different types of end conditions. The obtained results are examined and the validity of the present method is proved showing excellent efficiency and rapid convergence.

MAS Simulations of Optical Antenna Structures

A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.

Enhancement of Biogas Production from Bakery Waste by Pseudomonas aeruginosa

Production of biogas from bakery waste was enhanced by additional bacterial cell. This study was divided into 2 steps. First step, grease waste from bakery industry-s grease trap was initially degraded by Pseudomonas aeruginosa. The concentration of byproduct, especially glycerol, was determined and found that glycerol concentration increased from 12.83% to 48.10%. Secondary step, 3 biodigesters were set up in 3 different substrates: non-degraded waste as substrate in first biodigester, degraded waste as substrate in secondary biodigester, and degraded waste mixed with swine manure in ratio 1:1 as substrate in third biodigester. The highest concentration of biogas was found in third biodigester that was 44.33% of methane and 63.71% of carbon dioxide. The lower concentration at 24.90% of methane and 18.98% of carbon dioxide was exhibited in secondary biodigester whereas the lowest was found in non-degraded waste biodigester. It was demonstrated that the biogas production was greatly increased with the initial grease waste degradation by Pseudomonas aeruginosa.

Personalisation of SOA Registry Query Results: Implementation, Performance Analysis and Scalability Evaluation

Service discovery is a very important component of Service Oriented Architectures (SOA). This paper presents two alternative approaches to customise the query results of private service registry such as Universal Description, Discovery and Integration (UDDI). The customisation is performed based on some pre-defined and/or real-time changing parameters. This work identifies the requirements, designs and additional mechanisms that must be applied to UDDI in order to support this customisation capability. We also detail the implements of the approaches and examine its performance and scalability. Based on our experimental results, we conclude that both approaches can be used to customise registry query results, but by storing personalization parameters in external resource will yield better performance and but less scalable when size of query results increases. We believe these approaches when combined with semantics enabled service registry will enhance the service discovery methods within a private UDDI registry environment.

Performance Analysis of MC-SS for the Indoor BPLC Systems

power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.

Arsenate Removal by Nano Zero-valent Iron in the Gas Bubbling System

This study focused on arsenate removal by nano zero-valent iron (NZVI) in the gas-bubbled aqueous solution. It appears that solution acidified by H2SO4 is far more favorable than by CO2-bubbled acidification. In addition, as dissolved oxygen was stripped out of solution by N2 gas bubbling, the arsenate removal dropped significantly. To take advantages of common practice of carbonation and oxic condition, pretreatment of CO2 and air bubbling in sequence are recommended for a better removal of arsenate.

Groebner Bases Computation in Boolean Rings is P-SPACE

The theory of Groebner Bases, which has recently been honored with the ACM Paris Kanellakis Theory and Practice Award, has become a crucial building block to computer algebra, and is widely used in science, engineering, and computer science. It is wellknown that Groebner bases computation is EXP-SPACE in a general polynomial ring setting. However, for many important applications in computer science such as satisfiability and automated verification of hardware and software, computations are performed in a Boolean ring. In this paper, we give an algorithm to show that Groebner bases computation is PSPACE in Boolean rings. We also show that with this discovery, the Groebner bases method can theoretically be as efficient as other methods for automated verification of hardware and software. Additionally, many useful and interesting properties of Groebner bases including the ability to efficiently convert the bases for different orders of variables making Groebner bases a promising method in automated verification.

Household Indebtedness Risks in the Czech Republic

In the past 20 years the economy of the Czech Republic has experienced substantial changes. In the 1990s the development was affected by the transformation which sought to establish the right conditions for privatization and creation of elementary market relations. In the last decade the characteristic elements such as private ownership and corresponding institutional framework have been strengthened. This development was marked by the accession of the Czech Republic to the EU. The Czech Republic is striving to reduce the difference between its level of economic development and the quality of institutional framework in comparison with other developed countries. The process of finding the adequate solutions has been hampered by the negative impact of the world financial crisis on the Czech Republic and the standard of living of its inhabitants. This contribution seeks to address the question of whether and to which extent the economic development of the transitive Czech economy is affected by the change in behaviour of households and their tendency to consumption, i.e. in the sense of reduction or increase in demand for goods and services. It aims to verify whether the increasing trend of household indebtedness and decreasing trend of saving pose a significant risk in the Czech Republic. At a general level the analysis aims to contribute to finding an answer to the question of whether the debt increase of Czech households is connected to the risk of "eating through" the borrowed money and whether Czech households risk falling into a debt trap. In addition to household indebtedness risks in the Czech Republic the analysis will focus on identification of specifics of the transformation phase of the Czech economy in comparison with the EU countries, or selected OECD countries.

Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions

In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.

Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach

In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.

Numerical Simulation of Wall Treatment Effects on the Micro-Scale Combustion

To understand working features of a micro combustor, a computer code has been developed to study combustion of hydrogen–air mixture in a series of chambers with same shape aspect ratio but various dimensions from millimeter to micrometer level. The prepared algorithm and the computer code are capable of modeling mixture effects in different fluid flows including chemical reactions, viscous and mass diffusion effects. The effect of various heat transfer conditions at chamber wall, e.g. adiabatic wall, with heat loss and heat conduction within the wall, on the combustion is analyzed. These thermal conditions have strong effects on the combustion especially when the chamber dimension goes smaller and the ratio of surface area to volume becomes larger. Both factors, such as larger heat loss through the chamber wall and smaller chamber dimension size, may lead to the thermal quenching of micro-scale combustion. Through such systematic numerical analysis, a proper operation space for the micro-combustor is suggested, which may be used as the guideline for microcombustor design. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the micro-combustor design, optimization and performance analysis.

Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites

In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.

Necessity of Risk Management of Various Industry-Associated Pollutants(Case Study of Gavkhoni Wetland Ecosystem)

Since the beginning of human history, human activities have caused many changes in the environment. Today, a particular attention should be paid to gaining knowledge about water quality of wetlands which are pristine natural environments rich in genetic reserves. If qualitative conditions of industrial areas (in terms of both physicochemical and biological conditions) are not addressed properly, they could cause disruption in natural ecosystems, especially in rivers. With regards to the quality of water resources, determination of pollutant sources plays a pivotal role in engineering projects as well as designing water quality control systems. Thus, using different methods such as flow duration curves, dischargepollution load model and frequency analysis by HYFA software package, risk of various industrial pollutants in international and ecologically important Gavkhoni wetland is analyzed. In this study, a station located at Varzaneh City is used as the last station on Zayanderud River, from where the river water is discharged into the wetland. Results showed that elements- concentrations often exceeded the allowed level and river water can endanger regional ecosystem. In addition, if the river discharge is managed on Q25 basis, this basis can lower concentrations of elements, keeping them within the normal level.

Entrepreneurship, Innovation, Incubator and Economic Development: A Case Study

The objective of this paper is twofold: (1) discuss and analyze the successful case studies worldwide, and (2) identify the similarities and differences of case studies worldwide. Design methodology/approach: The nature of this research is mainly method qualitative (multi-case studies, literature review). This investigation uses ten case studies, and the data was mainly collected and organizational documents from the international countries. Finding: The finding of this research can help incubator manager, policy maker and government parties for successful implementation. Originality/value: This paper contributes to the current literate review on the best practices worldwide. Additionally, it presents future perspective for academicians and practitioners.