Calculation of the Forces Acting on the Knee Joint When Rising from Kneeling Positions (Effects of the Leg Alignment and the Arm Assistance on the Knee Joint Forces)

Knee joint forces are available by in vivo measurement using an instrumented knee prosthesis for small to moderate knee flexion but not for high flexion yet. We created a 2D mathematical model of the lower limb incorporating several new features such as a patello-femoral mechanism, a thigh-calf contact at high knee flexion and co-contracting muscles' force ratio, then used it to determine knee joint forces arising from high knee flexions in four kneeling conditions: rising with legs in parallel, with one foot forward, with or without arm use. With arms used, the maximum values of knee joint force decreased to about 60% of those with arms not used. When rising with one foot forward, if arms are not used, the forward leg sustains a force as large as that sustained when rising with legs parallel.

Improving the Performance of Proxy Server by Using Data Mining Technique

Currently, web usage make a huge data from a lot of user attention. In general, proxy server is a system to support web usage from user and can manage system by using hit rates. This research tries to improve hit rates in proxy system by applying data mining technique. The data set are collected from proxy servers in the university and are investigated relationship based on several features. The model is used to predict the future access websites. Association rule technique is applied to get the relation among Date, Time, Main Group web, Sub Group web, and Domain name for created model. The results showed that this technique can predict web content for the next day, moreover the future accesses of websites increased from 38.15% to 85.57 %. This model can predict web page access which tends to increase the efficient of proxy servers as a result. In additional, the performance of internet access will be improved and help to reduce traffic in networks.

The Effect of Leadership Styles on Continuous Improvement Teams

This research explorers the relationship between leadership style and continuous improvement (CI) teams. CI teams have several features that are not always found in other types of teams, including multi-functional members, short time period for performance, positive and actionable results, and exposure to senior leadership. There is no one best style of leadership for these teams. Instead, it is important to select the best leadership style for the situation. The leader must have the flexibility to change styles and the skill to use the chosen style effectively in order to ensure the team’s success.

Image Search by Features of Sorted Gray level Histogram Polynomial Curve

Image Searching was always a problem specially when these images are not properly managed or these are distributed over different locations. Currently different techniques are used for image search. On one end, more features of the image are captured and stored to get better results. Storing and management of such features is itself a time consuming job. While on the other extreme if fewer features are stored the accuracy rate is not satisfactory. Same image stored with different visual properties can further reduce the rate of accuracy. In this paper we present a new concept of using polynomials of sorted histogram of the image. This approach need less overhead and can cope with the difference in visual features of image.

Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Mining Image Features in an Automatic Two-Dimensional Shape Recognition System

The number of features required to represent an image can be very huge. Using all available features to recognize objects can suffer from curse dimensionality. Feature selection and extraction is the pre-processing step of image mining. Main issues in analyzing images is the effective identification of features and another one is extracting them. The mining problem that has been focused is the grouping of features for different shapes. Experiments have been conducted by using shape outline as the features. Shape outline readings are put through normalization and dimensionality reduction process using an eigenvector based method to produce a new set of readings. After this pre-processing step data will be grouped through their shapes. Through statistical analysis, these readings together with peak measures a robust classification and recognition process is achieved. Tests showed that the suggested methods are able to automatically recognize objects through their shapes. Finally, experiments also demonstrate the system invariance to rotation, translation, scale, reflection and to a small degree of distortion.

A Design and Implementation Model for Web Caching Using Server “URL Rewriting“

In order to make surfing the internet faster, and to save redundant processing load with each request for the same web page, many caching techniques have been developed to reduce latency of retrieving data on World Wide Web. In this paper we will give a quick overview of existing web caching techniques used for dynamic web pages then we will introduce a design and implementation model that take advantage of “URL Rewriting" feature in some popular web servers, e.g. Apache, to provide an effective approach of caching dynamic web pages.

Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Social Aggravations during the Period of Medieval Wars in Europe

This article makes and attempt to disclose the dynamics of development of social interactions in an aggravated environment in relation to the distinctive features of religious wars and their negative impact to the society. Crisis situations that took place in all spheres of social life are described, on the grounds of which the author comes to specific conclusions.

Multidimensional and Data Mining Analysis for Property Investment Risk Analysis

Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.

Ontology-based Concept Weighting for Text Documents

Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.

Color and Layout-based Identification of Documents Captured from Handheld Devices

This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.

Quality-Driven Business Process Refactoring

Appropriate description of business processes through standard notations has become one of the most important assets for organizations. Organizations must therefore deal with quality faults in business process models such as the lack of understandability and modifiability. These quality faults may be exacerbated if business process models are mined by reverse engineering, e.g., from existing information systems that support those business processes. Hence, business process refactoring is often used, which change the internal structure of business processes whilst its external behavior is preserved. This paper aims to choose the most appropriate set of refactoring operators through the quality assessment concerning understandability and modifiability. These quality features are assessed through well-proven measures proposed in the literature. Additionally, a set of measure thresholds are heuristically established for applying the most promising refactoring operators, i.e., those that achieve the highest quality improvement according to the selected measures in each case.

Accurate Visualization of Graphs of Functions of Two Real Variables

The study of a real function of two real variables can be supported by visualization using a Computer Algebra System (CAS). One type of constraints of the system is due to the algorithms implemented, yielding continuous approximations of the given function by interpolation. This often masks discontinuities of the function and can provide strange plots, not compatible with the mathematics. In recent years, point based geometry has gained increasing attention as an alternative surface representation, both for efficient rendering and for flexible geometry processing of complex surfaces. In this paper we present different artifacts created by mesh surfaces near discontinuities and propose a point based method that controls and reduces these artifacts. A least squares penalty method for an automatic generation of the mesh that controls the behavior of the chosen function is presented. The special feature of this method is the ability to improve the accuracy of the surface visualization near a set of interior points where the function may be discontinuous. The present method is formulated as a minimax problem and the non uniform mesh is generated using an iterative algorithm. Results show that for large poorly conditioned matrices, the new algorithm gives more accurate results than the classical preconditioned conjugate algorithm.

Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

An Analysis of Users- Cognition Difference on Urban Design Elements in Waterfronts

The purpose of this study is to identify ideal urban design elements of waterfronts and to analyze the differences in users- cognition among these elements. This study follows three steps as following: first is identifying the urban design elements of waterfronts from literature review and second is evaluating intended users- cognition of urban design elements in urban waterfronts. Lastly, third is analyzing the users- cognition differences. As the result, evaluations of waterfront areas by users show similar features that non-waterfront urban design elements contain the highest degree of importance. This indicates the difference of users- cognition has dimensions of frequency and distance, and demonstrates differences in the aspect of importance than of satisfaction. Multi-Dimensional Scaling Method verifies differences among their cognition. This study provides elements to increase satisfaction of users from differences of their cognition on design elements for waterfronts. It also suggests implications on elements when waterfronts are built.

Evolutionary of Prostate Cancer Stem Cells in Prostate Duct

A systems approach model for prostate cancer in prostate duct, as a sub-system of the organism is developed. It is accomplished in two steps. First this research work starts with a nonlinear system of coupled Fokker-Plank equations which models continuous process of the system like motion of cells. Then extended to PDEs that include discontinuous processes like cell mutations, proliferation and deaths. The discontinuous processes is modeled by using intensity poisson processes. The model incorporates the features of the prostate duct. The system of PDEs spatial coordinate is along the proximal distal axis. Its parameters depend on features of the prostate duct. The movement of cells is biased towards distal region and mutations of prostate cancer cells is localized in the proximal region. Numerical solutions of the full system of equations are provided, and are exhibit traveling wave fronts phenomena. This motivates the use of the standard transformation to derive a canonically related system of ODEs for traveling wave solutions. The results obtained show persistence of prostate cancer by showing that the non-negative cone for the traveling wave system is time invariant. The traveling waves have a unique global attractor is proved also. Biologically, the global attractor verifies that evolution of prostate cancer stem cells exhibit the avascular tumor growth. These numerical solutions show that altering prostate stem cell movement or mutation of prostate cancer cells lead to avascular tumor. Conclusion with comments on clinical implications of the model is discussed.

Proposal of a Means for Reducing the Torque Variation on a Vertical-Axis Water Turbine by Increasing the Blade Number

This paper presents a means for reducing the torque variation during the revolution of a vertical-axis water turbine (VAWaterT) by increasing the blade number. For this purpose, twodimensional CFD analyses have been performed on a straight-bladed Darrieus-type rotor. After describing the computational model and the relative validation procedure, a complete campaign of simulations, based on full RANS unsteady calculations, is proposed for a three, four and five-bladed rotor architectures, characterized by a NACA 0025 airfoil. For each proposed rotor configuration, flow field characteristics are investigated at several values of tip speed ratio, allowing a quantification of the influence of blade number on flow geometric features and dynamic quantities, such as rotor torque and power. Finally, torque and power curves are compared for the three analyzed architectures, achieving a quantification of the effect of blade number on overall rotor performance.

Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette

Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.

Gene Selection Guided by Feature Interdependence

Cancers could normally be marked by a number of differentially expressed genes which show enormous potential as biomarkers for a certain disease. Recent years, cancer classification based on the investigation of gene expression profiles derived by high-throughput microarrays has widely been used. The selection of discriminative genes is, therefore, an essential preprocess step in carcinogenesis studies. In this paper, we have proposed a novel gene selector using information-theoretic measures for biological discovery. This multivariate filter is a four-stage framework through the analyses of feature relevance, feature interdependence, feature redundancy-dependence and subset rankings, and having been examined on the colon cancer data set. Our experimental result show that the proposed method outperformed other information theorem based filters in all aspect of classification errors and classification performance.