LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc

The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.

Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass

In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).

Investigations on the Seismic Performance of Hot-Finished Hollow Steel Sections

In seismic applications, hollow steel sections show, beyond undeniable esthetical appeal, promising structural advantages since, unlike open section counterparts, they are not susceptible to weak-axis and lateral-torsional buckling. In particular, hot-finished hollow steel sections have homogeneous material properties and favorable ductility but have been underutilized for cyclic bending. The main reason is that the parameters affecting their hysteretic behaviors are not yet well understood and, consequently, are not well exploited in existing codes of practice. Therefore, experimental investigations have been conducted on a wide range of hot-finished rectangular hollow section beams with the aim to providing basic knowledge for evaluating their seismic performance. The section geometry (width-to-thickness and depth-to-thickness ratios) and the type of loading (monotonic and cyclic) have been chosen as the key parameters to investigate the cyclic effect on the rotational capacity and to highlight the differences between monotonic and cyclic load conditions. The test results provide information on the parameters that affect the cyclic performance of hot-finished hollow steel beams and can be used to assess the design provisions stipulated in the current seismic codes of practice.

Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

State of Emergency in Turkey (July 2016 – July 2018): A Case of Utilization of Law as a Political Instrument

In this study, we will aim to analyze how the period of the state of emergency in Turkey lead to gaps in law and the formation of areas in which there was a complete lack of supervision. The state of emergency that was proclaimed following the coup attempt of July 15, 2016, continued until July 18, 2018, that is to say, 2 years, without taking into account whether the initial circumstances persisted. As part of this work, we claim that the state of emergency provided the executive power with important tools for governing, which it took constant use. We can highlight how the concern for security at the center of the basic considerations of the people in a city was exploited as a foundation by the military power in Turkey to interfere in the political, legal and social spheres. The constitutions of 1924, 1961 and 1982 entrusted the army with the role of protector of the integrity of the state. This became an instrument at the hands of the military to legitimize their interventions in the name of public security. Its interventions in the political field are indeed politically motivated. The constitution, the legislative and regulatory systems are modified and monopolized by the military power that dominates the legislative, regulatory and judicial power, leading to a state of exception. With the political convulsions over a decade, the government was able to usurp the instrument called the state of exception. In particular, the decree-laws of the state of emergency, which the executive makes frequent and generally abusive use, became instruments in the hands of the government to take measures that it wishes to escape from the rules and the pre-established control mechanisms. Thus the struggle against the political opposition becomes more unbalanced and destructive. To this must also be added the ineffectiveness of ex-post controls and domestic remedies. This research allows us to stress how a legal concept such as "the state of emergency" can be politically exploited to make it a legal weapon that continues to produce victims.

Public Participation Regarding Heritage Preservation in Former Communist Countries: The Case of Tobacco City in Plovdiv, Bulgaria

In times of rapid globalization, the significance of cultural and architectural heritage is rising, as it is a key element to define the identity of a place, a city, even a country. Its preservation, conservation, and revitalization are everyone’s responsibility, and the public is growing more aware of that fact. The citizens are looking for a way to actively participate in the decision-making in projects regarding heritage sites. Public involvement in the planning process is not a new phenomenon, especially in Western countries. However, countries, such as the former communist states of Eastern Europe, have been less studied. Based on established theories, this paper analyses the level of citizens’ inclusion in projects regarding heritage preservation, using the example of the Tobacco City in Plovdiv, Bulgaria. As this case is exemplary for Bulgaria, it illustrates the current condition of public participation country-wise. At the same time, considering the former communist states have had a similar socio-economic and political development in the past several decades, it is possible to apply the conclusions to most of these countries with only slight variations.

Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Urban Development from the Perspective of Lou Gang Polder System: Taihu Lake, Huzhou as an Example

Lou Gang world irrigation project heritage in Taihu Lake is a systematic irrigation project integrating water conservancy, ecology and culture. Through the methods of historical documents and field investigation, this paper deeply analyzes the formation history, connotation and value of Lou Gang polder system: Lou Gang heritage, describes in detail the relationship between Lou Gang polder system in Taihu Lake and the development and evolution of Huzhou City, and initially explores the protection and Utilization Strategies of Lou Gang water conservancy cultural heritage resources in Taihu Lake from the current situation.

Mechanical Properties of Organic Polymer and Exfoliated Graphite Reinforced Bacteria Cellulose Paper

Bacterial Cellulose (BC) is a structural organic compound produced in the anaerobic process. This material can be a useful eco-friendly substitute for commercial textiles that are used in industries today. BC is easily and sustainably produced and has the capabilities to be used as a replacement in textiles. However, BC is extremely fragile when it completely dries. This research was conducted to improve the mechanical properties of the BC by reinforcing with an organic polymer and exfoliated graphite (EG). The BC films were grown over a period of weeks in a green tea and kombucha solution at 30 °C, then cleaned and added to an enhancing solution. The enhancing solutions were a mixture of 2.5 wt% polymer and 2.5 wt% latex solution, a 5 wt% polymer solution, a 0.20 wt% graphite solution and were each allowed to sit in a furnace for 48 h at 50 °C. Tensile test samples were prepared and tested until fracture at a strain rate of 8 mm/min. From the research with the addition of a 5 wt% polymer solution, the flexibility of the BC has significantly improved with the maximum strain significantly larger than that of the base sample. The addition of EG has also increased the modulus of elasticity of the BC by about 25%.

Fatal Road Accident Causer's Driving Aptitude in Hungary

Those causing fatal traffic accidents are traumatized, which negatively influences their cognitive functions and their personality. In order to clarify how much the trauma of causing a fatal accident effects their driving skills and personality traits, the results of a psychological aptitude and a personality test of drivers carelessly causing fatal accidents and of drivers not causing any accidents were compared separately. The sample (N = 354) consists of randomly selected drivers from the Transportation Aptitude and Examination Centre database who caused fatal accidents (Fatal group, n = 177) or did not cause accidents (Control group, n = 177). The aptitude tests were taken between 2014 and 2019. The comparison of the 2 groups was done according to 3 aspects: 1. Categories of aptitude (suitable, restricted, unsuited); 2. Categories of causes (ability, personality, ability and personality) within the restricted or unsuited (altogether: non-suitable subgroups); 3. Categories of ability and personality within the non-suitable subgroups regardless of the cause-category. Within ability deficiency, the two groups include those, whose ability factor is impaired or limited. This is also true in case of personality failure. Compared to the control group, the number of restricted drivers causing fatal accidents is significantly higher (p < .000) and the number of unsuited drivers is higher on a tendency-level (p = .06). Compared to the control group in the fatal non-suitable subgroup, the ratio of restricted suitability and the unsuitability due to ability factors is exclusively significantly lower (p < .000). The restricted suitability and the unsuitability due to personality factors are more significant in the fatal non-suitable subgroup (p < .000). Incapacity due to combination of ability and personality is also significantly higher in the fatal group (p = .002). Compared to the control group both ability and personality factors are also significantly higher in the fatal non-suitable subgroup (p < .000). Overall, the control group is more eligible for driving than drivers who have caused fatalities. The ability and personality factors are significantly higher in the case of fatal accident causers who are non-suitable for driving. Moreover the concomitance of ability and personality factors occur almost exclusively to drivers who caused fatal accidents. Further investigation is needed to understand the causes and how the aptitude test results for the fatal group could improve over time.

The Cardiac Diagnostic Prediction Applied to a Designed Holter

We have designed a Holter that measures the heart´s activity for over 24 hours, implemented a prediction methodology, and generate alarms as well as indicators to patients and treating physicians. Various diagnostic advances have been developed in clinical cardiology thanks to Holter implementation; however, their interpretation has largely been conditioned to clinical analysis and measurements adjusted to diverse population characteristics, thus turning it into a subjective examination. This, however, requires vast population studies to be validated that, in turn, have not achieved the ultimate goal: mortality prediction. Given this context, our Insight Research Group developed a mathematical methodology that assesses cardiac dynamics through entropy and probability, creating a numerical and geometrical attractor which allows quantifying the normalcy of chronic and acute disease as well as the evolution between such states, and our Tigum Research Group developed a holter device with 12 channels and advanced computer software. This has been shown in different contexts with 100% sensitivity and specificity results.

Design for Classroom Units: A Collaborative Multicultural Studio Development with Chinese Students

In this paper, we present the main results achieved during a five-week international workshop on Interactive Furniture for the Classroom, with 22 Chinese design students, in Jiangmen city (Guangdong province, China), and five teachers from Portugal, France, Iran, Macao SAR, and China. The main goal was to engage design students from China with new skills and practice methodologies towards interactive design research for furniture and product design for the classroom. The final results demonstrate students' concerns on improving Chinese furniture design for the classrooms, including solutions related to collaborative learning and human-interaction design for interactive furniture products. The findings of the research led students to the fabrication of five original prototypes: two for kindergartens ('Candy' and 'Tilt-tilt'), two for primary schools ('Closer' and 'Eks(x)'), and one for art/creative schools ('Wave'). From the findings, it was also clear that collaboration, personalization, and project-based teaching are still neglected when designing furniture products for the classroom in China. Students focused on these issues and came up with creative solutions that could transform this educational field in China.

Application of Synthetic Monomers Grafted Xanthan Gum for Rhodamine B Removal in Aqueous Solution

The rapid industrialisation and population growth have led to a steady fall in freshwater supplies worldwide. As a result, water systems are affected by modern methods upon use due to secondary contamination. The application of novel adsorbents derived from natural polymer holds a great promise in addressing challenges in water treatment. In this study, the UV irradiation technique was used to prepare acrylamide (AAm) monomer, and acrylic acid (AA) monomer grafted xanthan gum (XG) copolymer. Furthermore, the factors affecting rhodamine B (RhB) adsorption from aqueous media, such as pH, dosage, concentration, and time were also investigated. The FTIR results confirmed the formation of graft copolymer by the strong vibrational bands at 1709 cm-1 and 1612 cm-1 for AA and AAm, respectively. Additionally, more irregular, porous and wrinkled surface observed from SEM of XG-g-AAm/AA indicated copolymerization interaction of monomers. The optimum conditions for removing RhB dye with a maximum adsorption capacity of 313 mg/g at 25 0C from aqueous solution were pH approximately 5, initial dye concentration = 200 ppm, adsorbent dose = 30 mg. Also, the detailed investigation of the isothermal and adsorption kinetics of RhB from aqueous solution showed that the adsorption of the dye followed a Freundlich model (R2 = 0.96333) and pseudo-second-order kinetics. The results further indicated that this absorbent based on XG had the universality to remove dye through the mechanism of chemical adsorption. The outstanding adsorption potential of the grafted copolymer could be used to remove cationic dyes from aqueous solution as a low-cost product.

Design of an Eddy Current Brake System for the Use of Roller Coasters Based on a Human Factors Engineering Approach

The goal of this paper is to converge upon a design of a brake system that could be used for a roller coaster found at an amusement park. It was necessary to find what could be deemed as a “comfortable” deceleration so that passengers do not feel as if they are suddenly jerked and pressed against the restraining harnesses. A human factors engineering approach was taken in order to determine this deceleration. Using a previous study that tested the deceleration of transit vehicles, it was found that a -0.45 G deceleration would be used as a design requirement to build this system around. An adjustable linear eddy current brake using permanent magnets would be the ideal system to use in order to meet this design requirement. Anthropometric data were then used to determine a realistic weight and length of the roller coaster that the brake was being designed for. The weight and length data were then factored into magnetic brake force equations. These equations were used to determine how the brake system and the brake run layout would be designed. A final design for the brake was determined and it was found that a total of 12 brakes would be needed with a maximum braking distance of 53.6 m in order to stop a roller coaster travelling at its top speed and loaded to maximum capacity. This design is derived from theoretical calculations, but is within the realm of feasibility.

Increasing Power Transfer Capacity of Distribution Networks Using Direct Current Feeders

Economic and population growth in densely-populated urban areas introduce major challenges to distribution system operators, planers, and designers. To supply added loads, utilities are frequently forced to invest in new distribution feeders. However, this is becoming increasingly more challenging due to space limitations and rising installation costs in urban settings. This paper proposes the conversion of critical alternating current (ac) distribution feeders into direct current (dc) feeders to increase the power transfer capacity by a factor as high as four. Current trends suggest that the return of dc transmission, distribution, and utilization are inevitable. Since a total system-level transformation to dc operation is not possible in a short period of time due to the needed huge investments and utility unreadiness, this paper recommends that feeders that are expected to exceed their limits in near future are converted to dc. The increase in power transfer capacity is achieved through several key differences between ac and dc power transmission systems. First, it is shown that underground cables can be operated at higher dc voltage than the ac voltage for the same dielectric stress in the insulation. Second, cable sheath losses, due to induced voltages yielding circulation currents, that can be as high as phase conductor losses under ac operation, are not present under dc. Finally, skin and proximity effects in conductors and sheaths do not exist in dc cables. The paper demonstrates that in addition to the increased power transfer capacity utilities substituting ac feeders by dc feeders could benefit from significant lower costs and reduced losses. Installing dc feeders is less expensive than installing new ac feeders even when new trenches are not needed. Case studies using the IEEE 342-Node Low Voltage Networked Test System quantify the technical and economic benefits of dc feeders.

Design of Reconfigurable Supernumerary Robotic Limb Based on Differential Actuated Joints

This paper presents a wearable reconfigurable supernumerary robotic limb with differential actuated joints, which is lightweight, compact and comfortable for the wearers. Compared to the existing supernumerary robotic limbs which mostly adopted series structure with large movement space but poor carrying capacity, a prototype with the series-parallel configuration to better adapt to different task requirements has been developed in this design. To achieve a compact structure, two kinds of cable-driven mechanical structures based on guide pulleys and differential actuated joints were designed. Moreover, two different tension devices were also designed to ensure the reliability and accuracy of the cable-driven transmission. The proposed device also employed self-designed bearings which greatly simplified the structure and reduced the cost.

Absent Theaters: A Virtual Reconstruction from Memories

Absent Theaters is a project that virtually reconstructs three theaters that existed in the twentieth century, demolished in the city of Medellin, Colombia: Circo España, Bolívar, and Junín. Virtual reconstruction is used as an excuse to talk with those who lived in their childhood and youth cultural spaces that formed a whole generation. Around 100 people who witnessed these theaters were interviewed. The means used to perform the oral history work was the virtual reconstruction of the interior of the theaters that were presented to the interviewees through the Virtual Reality glasses. The voices of people between 60 and 103 years old were used to generate a transmission of knowledge to the new generations about the importance of theaters as essential places for the city, as spaces generating social relations and knowledge of other cultures. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places. Oral stories about events, the historical and social context of the city, were mixed with archive images and animations of the architectural transformations of these places, with the purpose of compiling a collective discourse around cultural activities, heritage, and memory of Medellin.

Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Evaluation of the Effects of Urban Planning Decisions on Commercial Function and Site Selection Decisions: Ümraniye - Alemdağ Street Pedestrianization Project

Metropolitan areas need urban transformation and urban renewal in terms of their internal Dynamics. Since 1980, the İstanbul Metropolitan area has been started to urban growth, while the population was increasing and it has brought together masses that have different lifestyles and cultures. Commercial and residential areas' spatial needs and decisions are affected by these different lifestyles. As the terms shopping mall and commercial Street became widespread, consumption trends had changed depending on the socio-economic characteristics of the people. Increase in demand for these areas, the number of shopping centers has increased, while the shopping streets started to be as effective as the shopping centers and have been pedestrianized. In this article, the change in commercial area site selection by the dynamics of the population will be examined in cities that diverged from spatial-temporal limitations. In the study, the analysis of multilayered data using geographic information systems (GIS) will be used as a method. With this method, a more synthesistic approach will be introduced with the collection editing, querying, and analysis of geographical data in computer-based systems. While conducting this analysis, Alemdağ Street in the Ümraniye district of İstanbul, where a pedestrian decision was made, will be based on and the change in the commercial and residential functions before and after the pedestrianization decision will be evaluated.

Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.