A New Method to Solve a Non Linear Differential System

In this article, our objective is the analysis of the resolution of non-linear differential systems by combining Newton and Continuation (N-C) method. The iterative numerical methods converge where the initial condition is chosen close to the exact solution. The question of choosing the initial condition is answered by N-C method.

A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations

In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.

Mobile Robot Path Planning in a 2-Dimentional Mesh

A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.

On Thermal Instabilities in a Viscoelastic Fluid Subject to Internal Heat Generation

The B'enard-Marangoni thermal instability problem for a viscoelastic Jeffreys- fluid layer with internal heat generation is investigated. The fluid layer is bounded above by a realistic free deformable surface and by a plane surface below. Our analysis shows that while the internal heat generation and the relaxation time both destabilize the fluid layer, its stability may be enhanced by an increased retardation time.

A Note on the Minimum Cardinality of Critical Sets of Inertias for Irreducible Zero-nonzero Patterns of Order 4

If there exists a nonempty, proper subset S of the set of all (n+1)(n+2)/2 inertias such that S Ôèå i(A) is sufficient for any n×n zero-nonzero pattern A to be inertially arbitrary, then S is called a critical set of inertias for zero-nonzero patterns of order n. If no proper subset of S is a critical set, then S is called a minimal critical set of inertias. In [Kim, Olesky and Driessche, Critical sets of inertias for matrix patterns, Linear and Multilinear Algebra, 57 (3) (2009) 293-306], identifying all minimal critical sets of inertias for n×n zero-nonzero patterns with n ≥ 3 and the minimum cardinality of such a set are posed as two open questions by Kim, Olesky and Driessche. In this note, the minimum cardinality of all critical sets of inertias for 4 × 4 irreducible zero-nonzero patterns is identified.

Existence and Global Exponential Stability of Periodic Solutions of Cellular Neural Networks with Distributed Delays and Impulses on Time Scales

In this paper, by using Mawhin-s continuation theorem of coincidence degree and a method based on delay differential inequality, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of cellular neural networks with distributed delays and impulses on time scales. The results of this paper generalized previously known results.

Mathematical Model for the Transmission of Two Plasmodium Malaria

Malaria is transmitted to the human by biting of infected Anopheles mosquitoes. This disease is a serious, acute and chronic relapsing infection to humans. Fever, nausea, vomiting, back pain, increased sweating anemia and splenomegaly (enlargement of the spleen) are the symptoms of the patients who infected with this disease. It is caused by the multiplication of protozoa parasite of the genus Plasmodium. Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale are the four types of Plasmodium malaria. A mathematical model for the transmission of Plasmodium Malaria is developed in which the human and vector population are divided into two classes, the susceptible and the infectious classes. In this paper, we formulate the dynamical model of Plasmodium falciparum and Plasmodium vivax malaria. The standard dynamical analysis is used for analyzing the behavior for the transmission of this disease. The Threshold condition is found and numerical results are shown to confirm the analytical results.

Agents Network on a Grid: An Approach with the Set of Circulant Operators

In this work we present some matrix operators named circulant operators and their action on square matrices. This study on square matrices provides new insights into the structure of the space of square matrices. Moreover it can be useful in various fields as in agents networking on Grid or large-scale distributed self-organizing grid systems.

Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method

In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.

A Sufficient Condition for Graphs to Have Hamiltonian [a, b]-Factors

Let a and b be nonnegative integers with 2 ≤ a < b, and let G be a Hamiltonian graph of order n with n ≥ (a+b−4)(a+b−2) b−2 . An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, b]-factor if |NG(X)| > (a−1)n+|X|−1 a+b−3 for every nonempty independent subset X of V (G) and δ(G) > (a−1)n+a+b−4 a+b−3 .

Velocity Distribution in Open Channels: Combination of Log-law and Parabolic-law

In this paper, based on flume experimental data, the velocity distribution in open channel flows is re-investigated. From the analysis, it is proposed that the wake layer in outer region may be divided into two regions, the relatively weak outer region and the relatively strong outer region. Combining the log law for inner region and the parabolic law for relatively strong outer region, an explicit equation for mean velocity distribution of steady and uniform turbulent flow through straight open channels is proposed and verified with the experimental data. It is found that the sediment concentration has significant effect on velocity distribution in the relatively weak outer region.

IFS on the Multi-Fuzzy Fractal Space

The IFS is a scheme for describing and manipulating complex fractal attractors using simple mathematical models. More precisely, the most popular “fractal –based" algorithms for both representation and compression of computer images have involved some implementation of the method of Iterated Function Systems (IFS) on complete metric spaces. In this paper a new generalized space called Multi-Fuzzy Fractal Space was constructed. On these spases a distance function is defined, and its completeness is proved. The completeness property of this space ensures the existence of a fixed-point theorem for the family of continuous mappings. This theorem is the fundamental result on which the IFS methods are based and the fractals are built. The defined mappings are proved to satisfy some generalizations of the contraction condition.

Generalised Slant Weighted Toeplitz Operator

A slant weighted Toeplitz operator Aφ is an operator on L2(β) defined as Aφ = WMφ where Mφ is the weighted multiplication operator and W is an operator on L2(β) given by We2n = βn β2n en, {en}n∈Z being the orthonormal basis. In this paper, we generalise Aφ to the k-th order slant weighted Toeplitz operator Uφ and study its properties.

MHD Falkner-Skan Boundary Layer Flow with Internal Heat Generation or Absorption

This paper examines the forced convection flow of incompressible, electrically conducting viscous fluid past a sharp wedge in the presence of heat generation or absorption with an applied magnetic field. The system of partial differential equations governing Falkner - Skan wedge flow and heat transfer is first transformed into a system of ordinary differential equations using similarity transformations which is later solved using an implicit finite - difference scheme, along with quasilinearization technique. Numerical computations are performed for air (Pr = 0.7) and displayed graphically to illustrate the influence of pertinent physical parameters on local skin friction and heat transfer coefficients and, also on, velocity and temperature fields. It is observed that the magnetic field increases both the coefficients of skin friction and heat transfer. The effect of heat generation or absorption is found to be very significant on heat transfer, but its effect on the skin friction is negligible. Indeed, the occurrence of overshoot is noticed in the temperature profiles during heat generation process, causing the reversal in the direction of heat transfer.

A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm

In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.

Solving Differential's Equation of Carrier Load on Semiconductor

The most suitable Semiconductor detector, Cadmium Zinc Teloraid , has unique properties because of high Atomic number and wide Brand Gap . It has been tried in this project with different processes such as Lead , Diffusion , Produce and Recombination , effect of Trapping and injection carrier of CdZnTe , to get hole and then present a complete answer of it . Then we should investigate the movement of carrier ( Electron – Hole ) by using above answer.

Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.