Abstract: In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.
Abstract: This paper discusses aspects of re-design of loadshedding
schemes with respect to actual developments in the Kosovo
power system. Load-shedding is a type of emergency control that is
designed to ensure system stability by reducing power system load to
match the power generation supply. This paper presents a new
adaptive load-shedding scheme that provides emergency protection
against excess frequency decline, in cases when the Kosovo power
system might be disconnected from the regional transmission
network. The proposed load-shedding scheme uses the local
frequency rate information to adapt the load-shedding pattern to suit
the size and location of the occurring disturbance. The proposed
scheme is tested in a software simulation on a large scale PSS/E
model which represents nine power system areas of Southeast Europe
including the Kosovo power system.
Abstract: Improving the reactive power and voltage profile of a
distribution substation is investigated in this paper. The purpose is to
properly determination of the shunt capacitors on/off status and
suitable tap changer (TC) position of a substation transformer. In
addition, the limitation of secondary bus voltage, the maximum
allowable number of switching operation in a day for on load tap
changer and on/off status of capacitors are taken into account. To
achieve these goals, an artificial neural network (ANN) is designed to
provide preliminary scheduling. Input of ANN is active and reactive
powers of transformer and its primary and secondary bus voltages.
The output of ANN is capacitors on/off status and TC position. The
preliminary schedule is further refined by fuzzy dynamic
programming in order to reach the final schedule. The operation of
proposed method in Q/V improving is compared with the results
obtained by operator operation in a distribution substation.
Abstract: Fuel cell is an emerging technology in the field
of renewable energy sources which has the capacity to replace
conventional energy generation sources. Fuel cell utilizes hydrogen
energy to produce electricity. The electricity generated by the fuel
cell can’t be directly used for a specific application as it needs
proper power conditioning. Moreover, the output power fluctuates
with different operating conditions. To get a stable output power
at an economic rate, power conditioning circuit is essential for fuel
cell. This paper implements a two-staged power conditioning unit for
fuel cell based distributed generation using hysteresis current control
technique.
Abstract: The influence of twist arrangement on the temperature
distribution in an annular diffuser fitted with twisted rectangular hub
is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and
60 mm) for the twist arrangements are simulated to be compared. The
geometry of the annular diffuser and the inlet condition for the hub
arrangements are kept constant. The result reveals that using twisted
rectangular hub insert with different pitches will force the
temperature to distribute in a circular direction. However,
temperature distribution will be enhanced with the length pitch
increases.
Abstract: A lightpipe is an about 99 percent specular reflective
mirror pipe or duct that is used for the transmission of the daylight
from the outside into a building. The lightpipes are usually used in
the daylighting buildings, in the residential, industrial and
commercial sectors. This paper is about the performances of a
lightpipe installed in a laboratory (3 m x 2.6 m x 3 m) without
windows. The aim is to analyse the luminous intensity distribution
for several sky/sun conditions. The lightpipe was monitored during
the year 2006. The lightpipe is 1 m long and the diameter of the top
collector and of the internal diffuser device is 0.25 m. In the
laboratory there are seven illuminance sensors: one external is
located on the roof of the laboratory and six internal sensors are
connected to a data acquisition system. The internal sensors are
positioned under the internal diffusive device at an height of 0.85 m
from the floor to simulate a working plane. The numerical data are
obtained through a simulation software. This paper shows the
comparison between the experimental and numerical results
concerning the behavior of the lightpipe.
Abstract: This paper describes interconnection between
technical and economical making decision. The reason of this dealing
could be different: poor technical condition, change of substation
(electrical network) regime, power transformer owner budget deficit
and increasing of tariff on electricity. Establishing of recommended
practice as well as to give general advice and guidance in economical
sector, testing, diagnostic power transformers to establish its
conditions, identify problems and provide potential remedies.
Abstract: Numerical study is performed to investigate the
temperature distribution in an annular diffuser fitted with helical tape
hub. Different pitches (Y = 20 mm, and Y = 30 mm) for the helical
tape are studied with different heights (H = 20 mm, 22 mm, and 24
mm) to be compared. The geometry of the annular diffuser and the
inlet condition for both hub arrangements are kept constant. The
result obtains that using helical tape insert with different pitches and
different heights will force the temperature to distribute in a helical
direction; however the use of helical tape hub with height (H = 22
mm) for both pitches enhance the temperature distribution in a good
manner.
Abstract: This paper focuses on the integration of hybrid renewable energy resources available in remote isolated islands of Sundarban-24 Parganas-South of Eastern part of India to National Grid of conventional power supply to give a Smart-Grid scenario. Before grid-integration, feasibility of optimization of hybrid renewable energy system is monitored through an Intelligent Controller proposed to be installed at Moushuni Island of Sundarban. The objective is to ensure the reliability and efficiency of the system to optimize the utilization of the hybrid renewable energy sources and also a proposition of how theses isolated Hybrid Renewable Energy Systems at remote islands can be grid-connected is analyzed towards vision of green smart-grid.
Abstract: Combining energy efficiency with renewable energy
sources constitutes a key strategy for a sustainable future. The wind
power sector stands out as a fundamental element for the
achievement of the European renewable objectives and Portugal is no
exception to the increase of the wind energy for the electricity
generation. This work proposes an optimization model for the long
range electricity power planning in a system similar to the
Portuguese one, where the expected impacts of the increasing
installed wind power on the operating performance of thermal power
plants are taken into account. The main results indicate that the
increasing penetration of wind power in the electricity system will
have significant effects on the combined cycle gas power plants
operation and on the theoretically expected cost reduction and
environmental gains. This research demonstrated the need to address
the impact that energy sources with variable output may have, not
only on the short-term operational planning, but especially on the
medium to long range planning activities, in order to meet the
strategic objectives for the energy sector.
Abstract: This paper proposes fractal patterns for power quality
(PQ) detection using color relational analysis (CRA) based classifier.
Iterated function system (IFS) uses the non-linear interpolation in the
map and uses similarity maps to construct various fractal patterns of
power quality disturbances, including harmonics, voltage sag, voltage
swell, voltage sag involving harmonics, voltage swell involving
harmonics, and voltage interruption. The non-linear interpolation
functions (NIFs) with fractal dimension (FD) make fractal patterns
more distinguishing between normal and abnormal voltage signals.
The classifier based on CRA discriminates the disturbance events in a
power system. Compared with the wavelet neural networks, the test
results will show accurate discrimination, good robustness, and faster
processing time for detecting disturbing events.
Abstract: In the hardening energy context, the transport sector
which constitutes a large worldwide energy demand has to be
improving for decrease energy demand and global warming impacts.
In a controversial situation where subsists an increasing demand for
long-distance and high-speed travels, high-speed trains offer many
advantages, as consuming significantly less energy than road or air
transports.
At the project phase of new rail infrastructures, it is nowadays
important to characterize accurately the energy that will be induced
by its operation phase, in addition to other more classical criteria as
construction costs and travel time.
Current literature consumption models used to estimate railways
operation phase are obsolete or not enough accurate for taking into
account the newest train or railways technologies.
In this paper, an updated model of consumption for high-speed is
proposed, based on experimental data obtained from full-scale tests
performed on a new high-speed line. The assessment of the model
is achieved by identifying train parameters and measured power
consumptions for more than one hundred train routes. Perspectives
are then discussed to use this updated model for accurately assess
the energy impact of future railway infrastructures.
Abstract: In the oil and gas industry, energy prediction can help
the distributor and customer to forecast the outgoing and incoming
gas through the pipeline. It will also help to eliminate any
uncertainties in gas metering for billing purposes. The objective of
this paper is to develop Neural Network Model for energy
consumption and analyze the performance model. This paper
provides a comprehensive review on published research on the
energy consumption prediction which focuses on structures and the
parameters used in developing Neural Network models. This paper is
then focused on the parameter selection of the neural network
prediction model development for energy consumption and analysis
on the result. The most reliable model that gives the most accurate
result is proposed for the prediction. The result shows that the
proposed neural network energy prediction model is able to
demonstrate an adequate performance with least Root Mean Square
Error.
Abstract: In this paper presents a technique for developing the
computational efficiency in simulating double output induction
generators (DOIG) with two rotor circuits where stator transients are
to be included. Iterative decomposition is used to separate the flux–
Linkage equations into decoupled fast and slow subsystems, after
which the model order of the fast subsystems is reduced by
neglecting the heavily damped fast transients caused by the second
rotor circuit using integral manifolds theory. The two decoupled
subsystems along with the equation for the very slowly changing slip
constitute a three time-scale model for the machine which resulted in
increasing computational speed. Finally, the proposed method of
reduced order in this paper is compared with the other conventional
methods in linear and nonlinear modes and it is shown that this
method is better than the other methods regarding simulation
accuracy and speed.
Abstract: In this paper, multiobjective design of multi-machine Power System Stabilizers (PSSs) using Particle Swarm Optimization (PSO) is presented. The stabilizers are tuned to simultaneously shift the lightly damped and undamped electro-mechanical modes of all machines to a prescribed zone in the s-plane. A multiobjective problem is formulated to optimize a composite set of objective functions comprising the damping factor, and the damping ratio of the lightly damped electromechanical modes. The PSSs parameters tuning problem is converted to an optimization problem which is solved by PSO with the eigenvalue-based multiobjective function. The proposed PSO based PSSs is tested on a multimachine power system under different operating conditions and disturbances through eigenvalue analysis and some performance indices to illustrate its robust performance.
Abstract: Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.
Abstract: In this paper we consider a nonlinear feedback control
called augmented automatic choosing control (AACC) for nonlinear
systems with constrained input using weighted gradient optimization
automatic choosing functions. Constant term which arises from
linearization of a given nonlinear system is treated as a coefficient of
a stable zero dynamics. Parameters of the control are suboptimally
selected by maximizing the stable region in the sense of Lyapunov
with the aid of a genetic algorithm. This approach is applied to a
field excitation control problem of power system to demonstrate the
splendidness of the AACC. Simulation results show that the new
controller can improve performance remarkably well.
Abstract: The induction hardening machines are utilized in
the industries which modify machine parts and tools needed to
achieve high ware resistance. This paper describes the model of
induction heating process design of inverter circuit and the results
of induction surface hardening of heating coil. In the design of
heating coil, the shape and the turn numbers of the coil are very
important design factors because they decide the overall operating
performance of induction heater including resonant frequency, Q
factor, efficiency and power factor. The performance will be tested
by experiments in some cases high frequency induction hardening
machine.
Abstract: The electric power industry is currently undergoing an unprecedented reform. One of the most exciting and potentially profitable recent developments is increasing usage of artificial intelligence techniques. The intention of this paper is to give an overview of using neural network (NN) techniques in power systems. According to the growth rate of NNs application in some power system subjects, this paper introduce a brief overview in fault diagnosis, security assessment, load forecasting, economic dispatch and harmonic analyzing. Advantages and disadvantages of using NNs in above mentioned subjects and the main challenges in these fields have been explained, too.
Abstract: The Indian subcontinent is facing a massive challenge with regards to the energy security in member countries, i.e. providing a reliable source of electricity to facilitate development across various sectors of the economy and thereby achieve the developmental targets it has set for itself. A highly precarious situation exists in the subcontinent which is observed in the series of system failures which most of the times leads to system collapses-blackouts. To mitigate the issues related with energy security as well as keep in check the increasing supply demand gap, a possible solution that stands in front of the subcontinent is the deployment of an interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the sub continent as well as provide the infra structure for RES integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on VSC HVDC converters for the Supergrid modeling.