Support Vector Machine Approach for Classification of Cancerous Prostate Regions

The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.

Project Management Success for Contractors

The aim of this paper is to provide a better understanding of the implementation of Project Management practices by UiTM contractors to ensure project success. A questionnaire survey was administered to 120 UiTM contractors in Malaysia. The purpose of this method was to gather information on the contractors- project background and project management skills. It was found that all of the contractors had basic knowledge and understanding of project management skills. It is suggested that a reasonable project plan and an appropriate organizational structure are influential factors for project success. It is recommended that the contractors need to have an effective program of work and up to date information system are emphasized.

The Effect of Hydropriming and Halopriming on Germination and Early Growth Stage of Wheat (Triticum aestivum L.)

In order to study of hydropriming and halopriming on germination and early growth stage of wheat (Triticum aestivum) an experiment was carried out in laboratory of the Department of Agronomy and Plant breeding, Shahrood University of Technology. Seed treatments consisted of T1: control (untreated seeds), T2: soaking in distilled water for 18 h (hydropriming). T3: soaking in - 1.2 MPa solution of CaSO4 for 36 h (halopriming). Germination and early seedling growth were studied using distilled water (control) and under osmotic potentials of -0.4, -0.8 and -1.2 MPa for NaCl and polyethylene glycol (PEG 6000), respectively. Results showed that Hydroprimed seeds achieved maximum germination seedling dry weight, especially during the higher osmotic potentials. Minimum germination was recorded at untreated seeds (control) followed by osmopriming. Under high osmotic potentials, hydroprimed seeds had higher GI (germination index) as compared to haloprimed or untreated seeds. Interaction effect of seed treatment and osmotic potential significantly affected the seedling vigour index (SVI).

Double Immobilized Lipase for the Kinetic Resolution of Secondary Alcohols

Sol-gel immobilization of enzymes, which can improve considerably their properties, is now one of the most used techniques. By deposition of the entrapped lipase on a solid support, a new and improved biocatalyst was obtained, which can be used with excellent results in acylation reactions. In this paper, lipase B from Candida antarctica was double immobilized on different adsorbents. These biocatalysts were employed in the kinetic resolution of several aliphatic secondary alcohols in organic medium. High total recovery yields of enzymatic activity, up to 560%, were obtained. For all the studied alcohols the enantiomeric ratios E were over 200. The influence of the reaction medium was studied for the kinetic resolution of 2-pentanol.

Modeling and Analysis of the Effects of Nephrolithiasis in Kidney Using a Computational Tactile Sensing Approach

Having considered tactile sensing and palpation of a surgeon in order to detect kidney stone during open surgery; we present the 2D model of nephrolithiasis (two dimensional model of kidney containing a simulated stone). The effects of stone existence that appear on the surface of kidney (because of exerting mechanical load) are determined. Using Finite element method, it is illustrated that the created stress patterns on the surface of kidney and stress graphs not only show existence of stone inside kidney, but also show its exact location.

Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Optimal Allocation of FACTS Devices for ATC Enhancement Using Bees Algorithm

In this paper, a novel method using Bees Algorithm is proposed to determine the optimal allocation of FACTS devices for maximizing the Available Transfer Capability (ATC) of power transactions between source and sink areas in the deregulated power system. The algorithm simultaneously searches the FACTS location, FACTS parameters and FACTS types. Two types of FACTS are simulated in this study namely Thyristor Controlled Series Compensator (TCSC) and Static Var Compensator (SVC). A Repeated Power Flow with FACTS devices including ATC is used to evaluate the feasible ATC value within real and reactive power generation limits, line thermal limits, voltage limits and FACTS operation limits. An IEEE30 bus system is used to demonstrate the effectiveness of the algorithm as an optimization tool to enhance ATC. A Genetic Algorithm technique is used for validation purposes. The results clearly indicate that the introduction of FACTS devices in a right combination of location and parameters could enhance ATC and Bees Algorithm can be efficiently used for this kind of nonlinear integer optimization.

Comparative Study of Tensile Properties of Cortical Bone Using Sub-size Specimens and Finite Element Simulation

Bone material is treated as heterogeneous and hierarchical in nature therefore appropriate size of bone specimen is required to analyze its tensile properties at a particular hierarchical level. Tensile properties of cortical bone are important to investigate the effect of drug treatment, disease and aging as well as for development of computational and analytical models. In the present study tensile properties of buffalo as well as goat femoral and tibiae cortical bone are analyzed using sub-size tensile specimens. Femoral cortical bone was found to be stronger in tension as compared to the tibiae cortical bone and the tensile properties obtained using sub-size specimens show close resemblance with the tensile properties of full-size cortical specimens. A two dimensional finite element (FE) modal was also applied to simulate the tensile behavior of sub-size specimens. Good agreement between experimental and FE model was obtained for sub-size tensile specimens of cortical bone.

e-Learning Program with Voice Assistance for a Tactile Braille

Along with the increased morbidity of glaucoma or diabetic retinitis pigmentosa, etc., number of people with vision loss is also increasing in Japan. It is difficult for the visually impaired to learn and acquire braille because most of them are middle-aged. In addition, number of braille teachers are not sufficient and reducing in Japan, and this situation makes more difficult for the visually impaired. Therefore, we research and develop a Web-based e-learning program for tactile braille, that cooperate with braille display and voice assistance.

Block Cipher Based on Randomly Generated Quasigroups

Quasigroups are algebraic structures closely related to Latin squares which have many different applications. The construction of block cipher is based on quasigroup string transformation. This article describes a block cipher based Quasigroup of order 256, suitable for fast software encryption of messages written down in universal ASCII code. The novelty of this cipher lies on the fact that every time the cipher is invoked a new set of two randomly generated quasigroups are used which in turn is used to create a pair of quasigroup of dual operations. The cryptographic strength of the block cipher is examined by calculation of the xor-distribution tables. In this approach some algebraic operations allows quasigroups of huge order to be used without any requisite to be stored.

RBF modeling of Incipient Motion of Plane Sand Bed Channels

To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.

Suitability of Requirements Abstraction Model (RAM) Requirements for High-Level System Testing

The Requirements Abstraction Model (RAM) helps in managing abstraction in requirements by organizing them at four levels (product, feature, function and component). The RAM is adaptable and can be tailored to meet the needs of the various organizations. Because software requirements are an important source of information for developing high-level tests, organizations willing to adopt the RAM model need to know the suitability of the RAM requirements for developing high-level tests. To investigate this suitability, test cases from twenty randomly selected requirements were developed, analyzed and graded. Requirements were selected from the requirements document of a Course Management System, a web based software system that supports teachers and students in performing course related tasks. This paper describes the results of the requirements document analysis. The results show that requirements at lower levels in the RAM are suitable for developing executable tests whereas it is hard to develop from requirements at higher levels.

Computational Algorithm for Obtaining Abelian Subalgebras in Lie Algebras

The set of all abelian subalgebras is computationally obtained for any given finite-dimensional Lie algebra, starting from the nonzero brackets in its law. More concretely, an algorithm is described and implemented to compute a basis for each nontrivial abelian subalgebra with the help of the symbolic computation package MAPLE. Finally, it is also shown a brief computational study for this implementation, considering both the computing time and the used memory.

Lattice Boltzmann Simulation of Binary Mixture Diffusion Using Modern Graphics Processors

A highly optimized implementation of binary mixture diffusion with no initial bulk velocity on graphics processors is presented. The lattice Boltzmann model is employed for simulating the binary diffusion of oxygen and nitrogen into each other with different initial concentration distributions. Simulations have been performed using the latest proposed lattice Boltzmann model that satisfies both the indifferentiability principle and the H-theorem for multi-component gas mixtures. Contemporary numerical optimization techniques such as memory alignment and increasing the multiprocessor occupancy are exploited along with some novel optimization strategies to enhance the computational performance on graphics processors using the C for CUDA programming language. Speedup of more than two orders of magnitude over single-core processors is achieved on a variety of Graphical Processing Unit (GPU) devices ranging from conventional graphics cards to advanced, high-end GPUs, while the numerical results are in excellent agreement with the available analytical and numerical data in the literature.

Combustion, Emission and Performance Characteristics of a Light Duty Diesel Engine Fuelled with Methanol Diesel Blends

Combustion, emission and performance characterization of a single cylinder diesel engine using methanol diesel blends was carried out. The blends were 5% (v/v) methanol in diesel (MD05) and 10% (v/v) methanol in diesel (MD10). The problem of solubility of methanol and diesel was addressed by an agitator placed inside the fuel tank to prevent phase separation. The results indicated that total combustion duration was reduced by15.8% for MD05 and 31.27% for MD10compared to the baseline data. Ignition delay was increased with increasing methanol volume fraction in the test fuel. Total cyclic heat release was reduced by 1.5% for MD05 and 6.7% for MD10 as compared to diesel baseline. Emissions of carbon monoxide, hydrocarbons along with smoke were reduced and that of nitrogen oxides were increased with rising methanol contents in the test fuel. Full load brake thermal efficiency was marginally reduced with increased methanol composition in the blend.

Assessment of Reliability and Quality Measures in Power Systems

The paper presents new results of a recent industry supported research and development study in which an efficient framework for evaluating practical and meaningful power system reliability and quality indices was applied. The system-wide integrated performance indices are capable of addressing and revealing areas of deficiencies and bottlenecks as well as redundancies in the composite generation-transmission-demand structure of large-scale power grids. The technique utilizes a linear programming formulation, which simulates practical operating actions and offers a general and comprehensive framework to assess the harmony and compatibility of generation, transmission and demand in a power system. Practical applications to a reduced system model as well as a portion of the Saudi power grid are also presented in the paper for demonstration purposes.

Performance Analysis of Flooding Attack Prevention Algorithm in MANETs

The lack of any centralized infrastructure in mobile ad hoc networks (MANET) is one of the greatest security concerns in the deployment of wireless networks. Thus communication in MANET functions properly only if the participating nodes cooperate in routing without any malicious intention. However, some of the nodes may be malicious in their behavior, by indulging in flooding attacks on their neighbors. Some others may act malicious by launching active security attacks like denial of service. This paper addresses few related works done on trust evaluation and establishment in ad hoc networks. Related works on flooding attack prevention are reviewed. A new trust approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate and prevent flooding attacks in an ad hoc environment. The performance of the trust algorithm is tested in an ad hoc network implementing the Ad hoc On-demand Distance Vector (AODV) protocol.

Arterial CO2 Pressure Drives Ventilation with a Time Delay during Recovery from an Impulse-like Exercise without Metabolic Acidosis

We investigated this hypothesis that arterial CO2 pressure (PaCO2) drives ventilation (V.E) with a time delay duringrecovery from short impulse-like exercise (10 s) with work load of 200 watts. V.E and end tidal CO2 pressure (PETCO2) were measured continuously during rest, warming up, exercise and recovery periods. PaCO2 was predicted (PaCO2 pre) from PETCO2 and tidal volume (VT). PETCO2 and PaCO2 pre peaked at 20 s of recovery. V.E increased and peaked at the end of exercise and then decreased during recovery; however, it peaked again at 30 s of recovery, which was 10 s later than the peak of PaCO2 pre. The relationship between V. E and PaCO2pre was not significant by using data of them obtained at the same time but was significant by using data of V.E obtained 10 s later for data of PaCO2 pre. The results support our hypothesis that PaCO2 drives V.E with a time delay.

Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm

In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.

Reliability of Chute-Feeders in Automatic Machines of High Production Capacity

Modern highly automated production systems faces problems of reliability. Machine function reliability results in changes of productivity rate and efficiency use of expensive industrial facilities. Predicting of reliability has become an important research and involves complex mathematical methods and calculation. The reliability of high productivity technological automatic machines that consists of complex mechanical, electrical and electronic components is important. The failure of these units results in major economic losses of production systems. The reliability of transport and feeding systems for automatic technological machines is also important, because failure of transport leads to stops of technological machines. This paper presents reliability engineering on the feeding system and its components for transporting a complex shape parts to automatic machines. It also discusses about the calculation of the reliability parameters of the feeding unit by applying the probability theory. Equations produced for calculating the limits of the geometrical sizes of feeders and the probability of sticking the transported parts into the chute represents the reliability of feeders as a function of its geometrical parameters.