A Ring Segmented Bus Architecture for Globally Asynchronous Locally Synchronous System

Recently, most digital systems are designed as GALS (Globally Asynchronous Locally Synchronous) systems. Several architectures have been proposed as bus architectures for a GALS system : shared bus, segmented bus, ring bus, and so on. In this study, we propose a ring segmented bus architecture which is a combination of segmented bus and ring bus architecture with the aim of throughput enhancement. In a segmented bus architecture, segments are connected in series. By connecting the segments at the end of the bus and constructing the ring bus, it becomes possible to allocate a channel of the bus bidirectionally. The bus channel is allocated to the shortest path between segments. We consider a metastable operation caused by asynchronous communication between segments and a burst transfer between segments. According to the result of simulation, it is shown that the GALS system designed by the proposed method has the desired operations.

A Decision Support Tool for Evaluating Mobility Projects

Success is a European project that will implement several clean transport offers in three European cities and evaluate the environmental impacts. The goal of these measures is to improve urban mobility or the displacement of residents inside cities. For e.g. park and ride, electric vehicles, hybrid bus and bike sharing etc. A list of 28 criteria and 60 measures has been established for evaluation of these transport projects. The evaluation criteria can be grouped into: Transport, environment, social, economic and fuel consumption. This article proposes a decision support system based that encapsulates a hybrid approach based on fuzzy logic, multicriteria analysis and belief theory for the evaluation of impacts of urban mobility solutions. A web-based tool called DeSSIA (Decision Support System for Impacts Assessment) has been developed that treats complex data. The tool has several functionalities starting from data integration (import of data), evaluation of projects and finishes by graphical display of results. The tool development is based on the concept of MVC (Model, View, and Controller). The MVC is a conception model adapted to the creation of software's which impose separation between data, their treatment and presentation. Effort is laid on the ergonomic aspects of the application. It has codes compatible with the latest norms (XHTML, CSS) and has been validated by W3C (World Wide Web Consortium). The main ergonomic aspect focuses on the usability of the application, ease of learning and adoption. By the usage of technologies such as AJAX (XML and Java Script asynchrones), the application is more rapid and convivial. The positive points of our approach are that it treats heterogeneous data (qualitative, quantitative) from various information sources (human experts, survey, sensors, model etc.).

Effect of Lubrication on the Quantity of Heat Emission of two Spur Gears in Meshing

This paper investigates the effects of lubrication on the quantity of heat emission of two spur gear. System with and without lubrication effected on the quantity of heat induced on the gear box (oil - bearings – gears). Both of lubrication and speed of motor are affected on the performance of gears. Research investigated the lubrication on the system with and without loading as well as the wear of gears and bearing's conditions. Gear box investigated includes the motor, pump, two spur gears, two shafts; speed change used pulleys and belts. Load used equal one weight ones of gear. Lubrication mechanism used jet system (upper and lower jet). Gear box we used system of jet lubrication is perpendicular direction of the contact line between two teeth. Results appeared in this work that the lubrication is the vital parameter which is affected on the performance and durability of gears and bearings. In macroscopic observation, we noted that damage of bearings happened during the absence of lubrication as well as abrasive of wear of teeth. Higher speed of motor without lubrication increased the noise, but in the presence of lubrication was decreased.

Manufacturing Process of a Novel Biomass Composite Inspired from Cellular Structure of Wood

A novel biomass composite inspired from wood porous structure was manufactured by impregnating vinyl monomer into wood cellular structure under vacuum conditions, and initiating the monomer for in situ polymerization through a thermal treatment. The vacuum condition was studied, and the mechanical properties of the composite were also tested. SEM observation shows that polymer generated in the wood porous structure, and strongly interacted with wood matrix; and the polymer content increased with vacuum value increasing. FTIR indicates that polymer grafted onto wood matrix, resulting chemical complex between them. The rate of monomer loading increased with increasing vacuum value and time, accordance with rate of polymer loading. The compression strength and modulus of elasticity linearly increased with the increasing rate of polymer loading. Results indicate that the novel biomass composite possesses good mechanical properties capable of applying in the fields of construction, traffic and so forth.

Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data

The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.

Measurement and Analysis of Temperature Effects on Box Girders of Continuous Rigid Frame Bridges

Researches on the general rules of temperature field changing and their effects on the bridge in construction are necessary. This paper investigated the rules of temperature field changing and its effects on bridge using onsite measurement and computational analysis. Guanyinsha Bridge was used as a case study in this research. The temperature field was simulated in analyses. The effects of certain boundary conditions such as sun radiance, wind speed, and model parameters such as heat factor and specific heat on temperature field are investigated. Recommended values for these parameters are proposed. The simulated temperature field matches the measured observations with high accuracy. At the same time, the stresses and deflections of the bridge computed with the simulated temperature field matches measured values too. As a conclusion, the temperature effect analysis of reinforced concrete box girder can be conducted directly based on the reliable weather data of the concerned area.

Assessment of Maternal and Embryo-Fetal Toxicity of Copper Oxide Fungicide

The excessive use of agricultural pesticides and the resulting contamination of food and beds of rivers have been a recurring problem nowadays. Some of these substances can cause changes in endocrine balance and impair reproductive function of human and animal population. In the present study, we evaluated the possible effects of the fungicide cuprous copper oxide Sandoz® on pregnant Wistar rats. They received a daily oral administration of 103 or 3.103 mg/kg of the fungicide from the 6th to the 15th day of gestation. On day 21 of gestation, the maternal and fetal toxicity parameters and indices were determined. The administration of cuprous oxide (Copper Sandoz) in Wistar rats, the period of organogenesis, revealed no evidence of maternal toxicity or embryo at the studied doses.

Application of SDS/LABS in Recovery Improvement from Fractured Models

This work concerns on experimentally investigation of surfactant flooding in fractured porous media. In this study a series of water and surfactant injection processes were performed on micromodels initially saturated with a heavy crude oil. Eight fractured glass micromodels were used to illustrate effects of surfactant types and concentrations on oil recovery efficiency in presence of fractures with different properties i.e. fracture orientation, length and number of fractures. Two different surfactants with different concentrations were tested. The results showed that surfactant flooding would be more efficient by using SDS surfactant aqueous solution and also by locating injection well in a proper position respect to fracture properties. This study demonstrates different physical and chemical conditions that affect the efficiency of this method of enhanced oil recovery.

OWA Operators in Generalized Distances

Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasiarithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, etc.

The Integration of Environmental Educational Outcomes within Higher Education to Nurture Environmental Consciousness amongst Engineering Undergraduates

Higher education has an important role to play in advocating environmentalism. Given this responsibility, the goal of higher education should therefore be to develop graduates with the knowledge, skills and values related to environmentalism. However, research indicates that there is a lack of consciousness amongst graduates on the need to be more environmentally aware, especially when it comes to applying the appropriate knowledge and skills related to environmentalism. Although institutions of higher learning do include environmental parameters within their undergraduate and postgraduate academic programme structures, the environmental boundaries are usually confined to specific engineering majors within an engineering programme. This makes environmental knowledge, skills and values exclusive to certain quarters of the higher education system. The incorporation of environmental literacy within higher education institutions as a whole is of utmost pertinence if a nation-s human capital is to be nurtured to become change agents for the preservation of environment. This paper discusses approaches that can be adapted by institutions of higher learning to include environmental literacy within the graduate-s higher learning experience.

Effect of Cooling Rate on base Metals Recovery from Copper Matte Smelting Slags

Slag sample from copper smelting operation in a water jacket furnace from DRC plant was used. The study intends to determine the effect of cooling in the extraction of base metals. The cooling methods investigated were water quenching, air cooling and furnace cooling. The latter cooling ways were compared to the original as received slag. It was observed that, the cooling rate of the slag affected the leaching of base metals as it changed the phase distribution in the slag and the base metals distribution within the phases. It was also found that fast cooling of slag prevented crystallization and produced an amorphous phase that encloses the base metals. The amorphous slags from the slag dumps were more leachable in acidic medium (HNO3) which leached 46%Cu, 95% Co, 85% Zn, 92% Pb and 79% Fe with no selectivity at pH0, than in basic medium (NH4OH). The leachability was vice versa for the modified slags by quenching in water which leached 89%Cu with a high selectivity as metal extractions are less than 1% for Co, Zn, Pb and Fe at ambient temperature and pH12. For the crystallized slags, leaching of base metals increased with the increase of temperature from ambient temperature to 60°C and decreased at the higher temperature of 80°C due to the evaporation of the ammonia solution used for basic leaching, the total amounts of base metals that were leached in slow cooled slags were very low compared to the quenched slag samples.

Graph-based High Level Motion Segmentation using Normalized Cuts

Motion capture devices have been utilized in producing several contents, such as movies and video games. However, since motion capture devices are expensive and inconvenient to use, motions segmented from captured data was recycled and synthesized to utilize it in another contents, but the motions were generally segmented by contents producers in manual. Therefore, automatic motion segmentation is recently getting a lot of attentions. Previous approaches are divided into on-line and off-line, where on-line approaches segment motions based on similarities between neighboring frames and off-line approaches segment motions by capturing the global characteristics in feature space. In this paper, we propose a graph-based high-level motion segmentation method. Since high-level motions consist of several repeated frames within temporal distances, we consider all similarities among all frames within the temporal distance. This is achieved by constructing a graph, where each vertex represents a frame and the edges between the frames are weighted by their similarity. Then, normalized cuts algorithm is used to partition the constructed graph into several sub-graphs by globally finding minimum cuts. In the experiments, the results using the proposed method showed better performance than PCA-based method in on-line and GMM-based method in off-line, as the proposed method globally segment motions from the graph constructed based similarities between neighboring frames as well as similarities among all frames within temporal distances.

The Bipartite Ramsey Numbers b(C2m; C2n)

Given bipartite graphs H1 and H2, the bipartite Ramsey number b(H1;H2) is the smallest integer b such that any subgraph G of the complete bipartite graph Kb,b, either G contains a copy of H1 or its complement relative to Kb,b contains a copy of H2. It is known that b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14 and b(K3,3;K3,3) = 17. In this paper we study the case that both H1 and H2 are even cycles, prove that b(C2m;C2n) ≥ m + n - 1 for m = n, and b(C2m;C6) = m + 2 for m ≥ 4.

Lifetime Maximization in Wireless Ad Hoc Networks with Network Coding and Matrix Game

In this paper, we present a matrix game-theoretic cross-layer optimization formulation to maximize the network lifetime in wireless ad hoc networks with network coding. To this end, we introduce a cross-layer formulation of general NUM (network utility maximization) that accommodates routing, scheduling, and stream control from different layers in the coded networks. Specifically, for the scheduling problem and then the objective function involved, we develop a matrix game with the strategy sets of the players corresponding to hyperlinks and transmission modes, and design the payoffs specific to the lifetime. In particular, with the inherit merit that matrix game can be solved with linear programming, our cross-layer programming formulation can benefit from both game-based and NUM-based approaches at the same time by cooperating the programming model for the matrix game with that for the other layers in a consistent framework. Finally, our numerical example demonstrates its performance results on a well-known wireless butterfly network to verify the cross-layer optimization scheme.

Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Monte Carlo Simulation of Copolymer Heterogeneity in Atom Transfer Radical Copolymerization of Styrene and N-Butyl Acrylate

A high-performance Monte Carlo simulation, which simultaneously takes diffusion-controlled and chain-length-dependent bimolecular termination reactions into account, is developed to simulate atom transfer radical copolymerization of styrene and nbutyl acrylate. As expected, increasing initial feed fraction of styrene raises the fraction of styrene-styrene dyads (fAA) and reduces that of n-butyl acrylate dyads (fBB). The trend of variation in randomness parameter (fAB) during the copolymerization also varies significantly. Also, there is a drift in copolymer heterogeneity and the highest drift occurs in the initial feeds containing lower percentages of styrene, i.e. 20% and 5%.

Binding of miR398 to mRNA of Chaperone and Superoxide Dismutase Genes in Plants

Among all microRNAs (miRNAs) in 12 plant species investigated in this study, only miR398 targeted the copper chaperone for superoxide dismutase (CCS). The nucleotide sequences of miRNA binding sites were located in the mRNA protein-coding sequence (CDS) and were highly homologous. These binding sites in CCS mRNA encoded a conservative GDLGTL hexapeptide. The binding sites for miR398 in the CDS of superoxide dismutase 1 mRNA encoded GDLGN pentapeptide. The conservative miR398 binding site located in the CDS of superoxide dismutase 2 mRNA encoded the GDLGNI hexapeptide. The miR398 binding site in the CDS of superoxide dismutase 3 mRNA encoded the GDLGNI or GDLGNV hexapeptide. Gene expression of the entire superoxide dismutase family in the studied plant species was regulated only by miR398. All members of the miR398 family, i.e. miR398a,b,c were connected to one site for each CuZnSOD and chaperone mRNA.

Broadband PowerLine Communications: Performance Analysis

Power line channel is proposed as an alternative for broadband data transmission especially in developing countries like Tanzania [1]. However the channel is affected by stochastic attenuation and deep notches which can lead to the limitation of channel capacity and achievable data rate. Various studies have characterized the channel without giving exactly the maximum performance and limitation in data transfer rate may be this is due to complexity of channel modeling being used. In this paper the channel performance of medium voltage, low voltage and indoor power line channel is presented. In the investigations orthogonal frequency division multiplexing (OFDM) with phase shift keying (PSK) as carrier modulation schemes is considered, for indoor, medium and low voltage channels with typical ten branches and also Golay coding is applied for medium voltage channel. From channels, frequency response deep notches are observed in various frequencies which can lead to reduce the achievable data rate. However, is observed that data rate up to 240Mbps is realized for a signal to noise ratio of about 50dB for indoor and low voltage channels, however for medium voltage a typical link with ten branches is affected by strong multipath and coding is required for feasible broadband data transfer.

Heavy Metals Transport in the Soil Profiles under the Application of Sludge and Wastewater

Heavy metal transfer in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban area of developing countries. In this study soil samples under sludge application and wastewater irrigation were studied and soil samples were collected in the soil profiles from the surface to 100 cm in depth. For this purpose, three plots were made in a treatment plant in south of Tehran-Iran. First plot was irrigated just with effluent from wastewater treatment plant, second plot with simulated heavy metals concentration equal 50 years irrigation and in third plot sewage sludge and effluent was used. Trace metals concentration (Cd, Cu) were determined for soil samples. The results indicate movement of metals was observed, but the most concentration of metals was found in topsoil samples. The most of Cadmium concentration was measured in the topsoil of plot 3, 4.5mg/kg and Maximum cadmium movement was observed in 0-20 cm. The most concentration of copper was 27.76mg/kg, and maximum percolation in 0-20 cm. Metals (Cd, Cu) were measured in leached water. Preferential flow and metal complexation with soluble organic apparently allow leaching of heavy metals.